Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells know which way to go

27.10.2014

Amoebas aren't the only cells that crawl: Movement is crucial to development, wound healing and immune response in animals, not to mention cancer metastasis. In two new studies from Johns Hopkins, researchers answer long-standing questions about how complex cells sense the chemical trails that show them where to go — and the role of cells' internal "skeleton" in responding to those cues.

In following these chemical trails, cells steer based on minute differences in concentrations of chemicals between one end of the cell and the other. "Cells can detect differences in concentration as low as 2 percent," says Peter Devreotes, Ph.D., director of the Department of Cell Biology at the Johns Hopkins University School of Medicine. "They're also versatile, detecting small differences whether the background concentration is very high, very low or somewhere in between."


In this video, lab-grown human leukemia cells move toward a pipette tip holding an attractive chemical.

Credit: Yulia Artemenko/Johns Hopkins Medicine

Working with Pablo Iglesias, Ph.D., a professor of electrical and computer engineering at Johns Hopkins, Devreotes' research group members Chuan-Hsiang Huang, Ph.D., a research associate, and postdoctoral fellow Ming Tang, Ph.D., devised a system for watching the response of a cellular control center that directs movement. They then subjected amoebas and human white blood cells to various gradients and analyzed what happened.

"Detecting gradients turns out to be a two-step process," says Huang. "First, the cell tunes out the background noise, and the side of the cell that is getting less of the chemical signal just stops responding to it. Then, the control center inside the cell ramps up its response to the message it's getting from the other side of the cell and starts the cell moving toward that signal." The results appear on the Nature Communications website on Oct. 27.

But to get going, the cell has to have first arranged its innards so that it's not just a uniform blob but has a distinct front and back, according to another study from Devreotes' group. In that work, visiting scientist Mingjie Wang, Ph.D., and postdoctoral fellow Yulia Artemenko, Ph.D., tested the role of so-called polarity — differences in sensitivity to chemicals between the front and back of a cell — in responding to a gradient.

"In previous studies, researchers added a drug that totally dismantled the cells' skeleton and therefore eliminated movement. They found that these cells had also lost polarity," Artemenko says. "We wanted to know whether polarity depended on movement and how polarity itself — independent of the ability to move — helped to detect gradients."

The team used a pharmaceutical cocktail that, rather than dismantling the cells' skeleton, froze it in place. Then, as in Huang's experiments, they watched the response of the cellular control center to chemical gradients. "Even though the cells couldn't remodel their skeleton in order to move, they did pick up signals from the gradients, and the response to the gradient was influenced by the frozen skeleton," Artemenko says. "This doesn't happen if the skeleton is completely gone, so now we know that the skeleton itself, not its ability to remodel, influences the detection of gradients." The results appear in the Nov. 6 issue of Cell Reports.

By fleshing out the details of how cells move, the results may ultimately shed light on the many crucial processes that depend on such movement, including development, immune response, wound healing and organ regeneration, and may provide ways to battle cancer metastasis.

###

Other authors on the Cell Reports paper are Wenjie Cai and Pablo Iglesias of The Johns Hopkins University. The study was funded by the National Institute of General Medical Sciences (grant numbers GM28007 and GM34933) and the National Natural Science Foundation of China (grant numbers 81000045 and 81000939).

Other authors on the Nature Communications paper are Mingjie Wang and Changji Shi of The Johns Hopkins University. The work was supported by the National Institute of General Medical Sciences (grant numbers GM28007, GM34933 and GM71920) and a Harold L. Plotnick Fellowship from the Damon Runyon Cancer Research Foundation.

Related stories:

Peter Devreotes on cell movement: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_us/scientists/peter_devreotes.html

'Random' Cell Movement Is Directed from Within: http://www.hopkinsmedicine.org/news/media/releases/randon_cell_movement_is_directed_from_within

Shawna Williams | Eurek Alert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Measurement of thoughts during knowledge acquisition
25.03.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Important Progress in the Fight against Testicular Cancer
25.03.2019 | Universität Bremen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>