Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells hack their own genes

24.08.2017

Researchers at IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences - unveil novel mechanism for gene expression.

DNA in all organisms from yeast to humans encodes the genes that make it possible to live and reproduce. But these beneficial genes make up only 2% of our DNA. In fact, more than two-thirds of our genome is populated by selfish genes that only care about their own replication – so-called genetic parasites.


The protein "Moonshiner" triggers RNA transcription within heterochromatin - depicted as a sea of densely packed histones. Drawing by Beata Mierzwa (beatascienceart.com)

(c)Beata Mierzwa


Image of a developing drosophila ovary with DNA stained in blue. Using staining for specific proteins researchers could locate the gene hacking events to the white foci in the germline nuclei.

(c)IMBA

Scattered throughout the genomes of plants, fungi, and animals, they can jump from one genomic location to another. Although they can be important for generating diversity in the genome, they can also cause lethal mutations or sterility.

Just as bacteria use the CRISPR/Cas9 system to identify and cleave viruses invading their DNA, eukaryotic cells have developed various strategies to protect the genome and silence these selfish genetic parasites. Small regulatory RNAs govern many of these genome-defense mechanisms and have also yielded major biotechnological innovations.

Solving an evolutionary “chicken and egg” dilemma

One important pathway that maintains the genomic integrity of animals is the piRNA pathway. This system is active in germ cells and utilizes small snippets of RNA—so called piRNAs—which fit like mirror images onto the transcripts of selfish sequences and thereby initiate silencing with their associated Argonaut proteins.

The Brennecke lab at IMBA has been rigorously exploring these RNA-based self-defense mechanisms in fruit flies, using cutting-edge next generation sequencing. The source of piRNAs is within silenced regions containing the selfish elements. This organization established an evolutionary “chicken and egg” dilemma: How could piRNAs be generated from the very regions that they silence? In their current Nature publication, Brennecke’s lab not only solve this enigma but also describe a completely new mechanism for gene-expression.

Moonshiner: There is always a way around

The newly discovered pathway is centered around a protein called moonshiner. Moonshiner is related to basal transcription factors, and interacts with Rhino, a protein bound to heterochromatin at the selfish genes. Rhino recruits Moonshiner to the heterochromatic region, and Moonshiner initiates assembly of the RNA polymerase II pre-initiation complex, that catalyzes the transcription.

Therefore, gene expression is activated in an otherwise silent region via a different code embedded in histone marks rather than DNA sequence. The findings show that piRNAs are transcribed by bending the classical rules of gene activation, combining elements of standard gene activation with gene silencing.

“The pathway, that is active in the piRNA clusters – where the piRNAs are born – literally hacks the gene machinery by combining two different systems, gene activation with gene silencing, just like furniture can be repurposed by IKEA hacking,” illustrates Peter Andersen, Postdoc at IMBA and first author of the paper. The moonshiner pathway thus reveals how cells can utilize heterochromatin for transcription.

“Cells have developed strategies to bypass conventional pathways. The current findings are not only essential to understand the arm´s race between useful genes and the selfish genes that have shaped and still drive evolutionary processes, they also contribute to understanding gene expression in a holistic way,” says Julius Brennecke, IMBA group leader and last author.

Original Publication:
'A heterochromatin-dependent transcription machinery drives piRNA expression', Andersen at al.,
Nature; DOI: 10.1038/nature23482

Press pictures:
http://de.imba.oeaw.ac.at/index.php?id=516

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

www.imba.oeaw.ac.at

About the Vienna BioCenter
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,700 employees, more than 1,300 students, 86 research groups, 17 biotech companies, and scientists from more than 40 nations create a highly dynamic environment.

www.viennabiocenter.org

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>