Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells communicate

14.01.2015

Research of the European Zebrafish Resource Center of KIT provides insight into the development of the central nervous system of vertebrates -- publication in Nature Communications

During embryonal development of vertebrates, signaling molecules inform each cell at which position it is located. In this way, the cell can develop its special structure and function. For the first time now, researchers of Karlsruhe Institute of Technology (KIT) have shown that these signaling molecules are transmitted in bundles via long filamentary cell projections.


These images show control of cell differentiation in the central nervous system: Long, blue-colored cytoplasmic projections, so-called filopodia, carry the red-colored signaling protein Wnt at the tip. As soon as neighboring cells are activated by the Wnt filopodia, the contact points are colored yellow.

Photos: Eliana Stanganello and Steffen Scholpp

Studies of zebrafish of the scientists of the European Zebrafish Resource Center (EZRC) of KIT revealed how the transport of the signaling molecules influences signaling properties. A publication in the Nature Communications journal presents the results.

Organisms, organs, and tissues are complex three-dimensional systems that consist of thousands of cells of various types. During embryonal development of vertebrates, each cell requires information on the position at which it is located in the tissue.

This position information enables the cell to develop a certain cell type for later execution of the correct function. This information is transmitted via signal molecules, so-called morphogenes. These morphogenes are not homogenously distributed in the tissue, their concentration varies. Various concentrations activate various genes in the target cell.

The cells in the developing central nervous system receive their position information from signal molecules belonging to the family of Wnt proteins. The concentration of Wnt proteins determines whether a cell differentiates to a cell of the forebrain or of the afterbrain. "Distribution of these signal molecules has to be controlled precisely," Dr. Steffen Scholpp, head of a research group of the KIT Institute of Toxicology and Genetics (ITG), explains. "Smallest changes of the concentration or the transport direction may cause severe damage, such as massive malformations during embryonal development or formation of cancer."

For the first time now, the working group of Dr. Steffen Scholpp has shown that the Wnt proteins are transmitted specifically via long cell projections, so-called filopodia. In the Nature Communications journal, the scientists report that the signaling factors are loaded on the tips of the filopodia only. In this way, signaling can start immediately upon contacting. The signaling factors bind to the corresponding receptors of the target cell and induce the correct cell response.

"Now, the source cell can decide precisely which target cell receives how much signaling protein at which time," Scholpp explains. The KIT researchers study zebrafish and human cell lines and succeeded in reproducing or reducing the filopodia and analyzing the resulting changes of signaling properties of the Wnt morphogenes.

###

Eliana Stanganello, Anja I.H. Hagemann, Benjamin Mattes, Claude Sinner, Dana Meyen, Sabrina Weber, Alexander Schug, Erez Raz & Steffen Scholpp: Filopodia-based Wnt transport during vertebrate tissue patterning. Nature Communications, published 5 January 2015. DOI: 10.1038/ncomms6846

About the EZRC

The European Zebrafish Resource Center (EZRC) of KIT accommodates a central archive for the cultivation and distribution of zebrafish stems for research. Zebrafishes are ideal model organisms for studying the causes of cancer or cardiac diseases or the effects of medical substances. Most organ systems of these vertebrates correspond to the organ systems of human beings. Moreover, zebrafish eggs are transparent and develop outside of the mother's body. In this way, the development of organs or even of individual cells can be observed in the embryo or the also transparent larva. The EZRC also is a screening center that offers innovative technologies, such as high-throughput synthesis of medical substances, genome sequencing, robotics and software for sample handling, microscopy, and image analysis.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>