Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How barbastelle bats trick moths that are able to hear their echolocation calls

14.03.2018

In the evolutionary arms race between bats and their insect prey, some moths have developed ears to detect echolocating bats and avoid being caught. Conversely, barbastelle bats are known to counter moth hearing by using quiet, 'stealthy' calls to search for prey in the dark.

Recording the hunting behaviour of this intriguing species, researchers have now found that barbastelle bats sneak up on unsuspecting moths by gradually emitting even fainter calls as they come closer.


A barbastelle bat with its characteristic bumpy face

Daniel Lewanzik / MPIO

The barbastelle bat, with its characteristic bumpy face, is a very successful hunter that manages to almost exclusively feed on eared moths. Comparable with stealth fighter jets, barbastelle bats use a 'stealth echolocation' tactic - echolocation at intensities that are inaudible to distant moths - to ambush prey. Their calls are more than 10 times quieter than those of other bats which hunt insects in the same way.

Upon detecting a nocturnal moth, this intriguing bat species reduces its call intensity even further while closing in, according to new research by ecologists at the Max Planck Institute for Ornithology in Germany.

Consequently, call intensity heard by the moth only increases very slowly, delaying the time and shortening the distance at which it becomes aware of the attacker. Once a moth hears the calls, it is most likely too late to escape.

"Barbastelle bats call with surprisingly low intensity, usually a characteristic of species that hunt in cluttered habitats and need to avoid distracting echoes from branches and leaves. Low intensity calls come at a cost though. They do not reach far and as a result, insects can only be detected from a close distance," says Dr Daniel Lewanzik from the Max Planck Institute of Ornithology.

To test why the barbastelle can catch eared moths when other bats cannot, the authors closely investigated echolocation behaviour during pursuit and final attack.

They tethered moths (Noctua pronuba) to a long fishing rod with a miniature microphone positioned a few centimetres above, offering them to free-ranging barbastelle bats in a forest and to captive ones in a flight room. This allowed the team to analyse the echolocation calls from a moth's perspective. Simultaneously, the researchers recorded the calls of approaching bats with a four-microphone array in order to reconstruct three-dimensional flight paths and thus measure their distance to the moths.

Barbastelle bats can detect moths at about 1.6 m distance. Once approaching their unsuspecting prey, the bats lower their already faint calls by 4 decibels (dB) or 40% for each halving of distance. During the final buzz when they are less than 1 m away, call intensity decreases by more than 6 dB or 50% per halving of distance*.

Echolocation call levels received by the moths remain almost constant during the attack (instead of doubling per halving of distance) as a result of the bats' stealth tactic, keeping them low enough to prevent the moth from escaping.

"Our results suggest that barbastelle bats are able to outwit the hearing defence of moths and close in without triggering any last-ditch manoeuvres, making them very successful moth hunters, " concludes Dr Holger Goerlitz, also from the research institute. "In fact, the evolution of moth ears might benefit barbastelles as they can avoid competition with other, louder bats."


For more information on this study, please contact the authors:

Dr Daniel Lewanzik, Max Planck Institute for Ornithology, Email: dlewanzik@orn.mpg.de, Tel: +49 8157 932 378
Dr Holger Goerlitz, Max Planck Institute for Ornithology, Email: hgoerlitz@orn.mpg.de, Tel: +49 8157 932 372

To request a pdf copy of the study and/or audiovisual material, please contact:

Sabrina Weiss, Press Officer, British Ecological Society, Email: press@britishecologicalsociety.org, Tel: +44 207 685 2523
Or:
Dr. Sabine Spehn, Press Officer, Max Planck Insitute for Ornithology
Email: pr_seewiesen@orn.mpg.de, Tel. +49 8157 932421

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1111/1365-2435.13073/full (with end of embargo time freely available for four weeks)

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:
http://www.orn.mpg.de

Further reports about: Max-Planck-Institut bats echolocation echolocation calls moths

More articles from Life Sciences:

nachricht Observing changes in the chirality of molecules in real time
15.11.2019 | ETH Zurich

nachricht Pinpointing Pollutants from Space
14.11.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

A step closer to cancer precision medicine

15.11.2019 | Health and Medicine

A one-way street for light

15.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>