Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria turbocharged their motors

09.01.2018

Using detailed 3D images, researchers have shown how bacteria have evolved molecular motors of different powers to optimize their swimming.

The discovery, by a team from Imperial College London, provides insights into evolution at the molecular scale.


This 3-D model images of the eight studied bacterial motors.

Credit

Morgan Beeby/Imperial College London

Bacteria use molecular motors just tens of nanometres wide to spin a tail (or 'flagellum') that pushes them through their habitat. Like human-made motors, the structure of these nanoscale machines determines their power and the bacteria's swimming ability.

Previously, the team from the Department of Life Sciences at Imperial looked at these motors and discovered a key factor that determined how strongly bacteria could swim. Like human-made motors, bacterial motors have distinct 'stator' and 'rotor' components that spin against each other.

The team found that the more stator structures the bacterial motor possessed, the larger its turning force, and the stronger the bacterium swam. Despite these differences, DNA sequence analysis shows that the core motors are ancestrally related. This led scientists to question how structure and swimming diversity evolved from the same core design.

Now, in new research published today in the journal Scientific Reports, the researchers were able to build a 'family tree' of bacterial motors by combining 3D imaging with DNA analysis. This allowed them to understand what ancestral motors may have looked like, and how they could have evolved into the sophisticated motors seen today.

The team found a clear difference between the motors of primitive and sophisticated bacterial species. While many primitive species had around 12 stators, more sophisticated species had around 17 stators. This, together with DNA analysis, suggested that ancient motors may also have only had 12 stators.

This clear separation between primitive and sophisticated species represents a "quantum leap" in evolution, according to the researchers. Their study reveals that the increase in motor power capacity is likely the result of existing structures fusing. This forms a structural scaffold to incorporate more stators, which combine to drive rotation with higher force.

Lead researcher Dr Morgan Beeby said: "We are used to observing evolution at the scale of animals or plants, such as the giraffe's neck slowly getting longer over time to reach previously inaccessible food.

"However, the evolution at the molecular scale is much more radical. It's like a giraffe having children with necks suddenly a metre longer."

To carry out the study, the team visualised a number of motors from different species of bacteria using a variant of a method called cryo-election microscopy, whose pioneers were awarded the Nobel Prize in Chemistry this year. The method involves flash-freezing the motors inside living cells. Once frozen, they can be imaged from all angles to build up a 3D picture of what the motor looks like inside the cell.

They then built up a 'family tree' of the species using DNA sequence analysis, which related their swimming ability and motor properties. They found that bacteria with 17 or more stators, and their relatives, had extra structures attached to their motors.

The researchers believe that these extra structures fused in sophisticated bacteria to provide a larger scaffold for supporting more stators.

However, they also say that this was likely not a one-time event. The extra structures appear to have evolved many times in different species of bacteria, using different building blocks but producing the same functionality.

The same functions evolving independently in completely different organisms has been seen before in the animal and plant kingdoms. For example, insects, bats and birds have all evolved wings that are similar in function but have completely different origins, eyes have emerged multiple times, and there is good evidence that nervous systems have also evolved several times, with some creatures possessing strange systems unlike the brains and spinal cords we are used to.

Dr Beeby said: "Bacterial motors are complex machines, but with studies like this we can see how they have evolved in distinct steps. Moreover, the 'leap' from 12 stators to 17, while a great innovation, has an aspect of 'biological inevitability' in the same way as wings, eyes, or nervous systems in higher animals: the precursors of high torque have evolved multiple times, and one set of them ended up fusing to form the scaffold we describe in our work".

He added: "Evolution is a creative process, often drawing on variations upon a theme. It is constantly churning out new molecular ideas, many of which fail, but inevitably some get realised multiple times. We have seen this in animals, and now we see this process in the nanoscopic world of molecular evolution too."

Hayley Dunning | EurekAlert!

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>