Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria turbocharged their motors

09.01.2018

Using detailed 3D images, researchers have shown how bacteria have evolved molecular motors of different powers to optimize their swimming.

The discovery, by a team from Imperial College London, provides insights into evolution at the molecular scale.


This 3-D model images of the eight studied bacterial motors.

Credit

Morgan Beeby/Imperial College London

Bacteria use molecular motors just tens of nanometres wide to spin a tail (or 'flagellum') that pushes them through their habitat. Like human-made motors, the structure of these nanoscale machines determines their power and the bacteria's swimming ability.

Previously, the team from the Department of Life Sciences at Imperial looked at these motors and discovered a key factor that determined how strongly bacteria could swim. Like human-made motors, bacterial motors have distinct 'stator' and 'rotor' components that spin against each other.

The team found that the more stator structures the bacterial motor possessed, the larger its turning force, and the stronger the bacterium swam. Despite these differences, DNA sequence analysis shows that the core motors are ancestrally related. This led scientists to question how structure and swimming diversity evolved from the same core design.

Now, in new research published today in the journal Scientific Reports, the researchers were able to build a 'family tree' of bacterial motors by combining 3D imaging with DNA analysis. This allowed them to understand what ancestral motors may have looked like, and how they could have evolved into the sophisticated motors seen today.

The team found a clear difference between the motors of primitive and sophisticated bacterial species. While many primitive species had around 12 stators, more sophisticated species had around 17 stators. This, together with DNA analysis, suggested that ancient motors may also have only had 12 stators.

This clear separation between primitive and sophisticated species represents a "quantum leap" in evolution, according to the researchers. Their study reveals that the increase in motor power capacity is likely the result of existing structures fusing. This forms a structural scaffold to incorporate more stators, which combine to drive rotation with higher force.

Lead researcher Dr Morgan Beeby said: "We are used to observing evolution at the scale of animals or plants, such as the giraffe's neck slowly getting longer over time to reach previously inaccessible food.

"However, the evolution at the molecular scale is much more radical. It's like a giraffe having children with necks suddenly a metre longer."

To carry out the study, the team visualised a number of motors from different species of bacteria using a variant of a method called cryo-election microscopy, whose pioneers were awarded the Nobel Prize in Chemistry this year. The method involves flash-freezing the motors inside living cells. Once frozen, they can be imaged from all angles to build up a 3D picture of what the motor looks like inside the cell.

They then built up a 'family tree' of the species using DNA sequence analysis, which related their swimming ability and motor properties. They found that bacteria with 17 or more stators, and their relatives, had extra structures attached to their motors.

The researchers believe that these extra structures fused in sophisticated bacteria to provide a larger scaffold for supporting more stators.

However, they also say that this was likely not a one-time event. The extra structures appear to have evolved many times in different species of bacteria, using different building blocks but producing the same functionality.

The same functions evolving independently in completely different organisms has been seen before in the animal and plant kingdoms. For example, insects, bats and birds have all evolved wings that are similar in function but have completely different origins, eyes have emerged multiple times, and there is good evidence that nervous systems have also evolved several times, with some creatures possessing strange systems unlike the brains and spinal cords we are used to.

Dr Beeby said: "Bacterial motors are complex machines, but with studies like this we can see how they have evolved in distinct steps. Moreover, the 'leap' from 12 stators to 17, while a great innovation, has an aspect of 'biological inevitability' in the same way as wings, eyes, or nervous systems in higher animals: the precursors of high torque have evolved multiple times, and one set of them ended up fusing to form the scaffold we describe in our work".

He added: "Evolution is a creative process, often drawing on variations upon a theme. It is constantly churning out new molecular ideas, many of which fail, but inevitably some get realised multiple times. We have seen this in animals, and now we see this process in the nanoscopic world of molecular evolution too."

Hayley Dunning | EurekAlert!

More articles from Life Sciences:

nachricht Many cooks don't spoil the broth: Manifold symbionts prepare their host for any eventuality
14.10.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Diagnostics for everyone
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>