Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Wound Closes

24.02.2015

Heidelberg researchers decode molecular mechanism of collective cell migration important for wound healing

For wounds to close, cells need to move collectively in one direction in a coordinated fashion. Until now the central molecular mechanism that allows cells to coordinate these movements over larger distances has been unclear. Now researchers from Heidelberg University and the Max Planck Institute for Intelligent Systems in Stuttgart have succeeded in decoding it. Collective cell migration is not only important in wound healing, but also in the development of the embryo and even of cancer. The results of their research, published in the journal “Nature Cell Biology”, have tremendous implications for all three of these areas.


Epithelial cells move collectively out of their original shape (left) into the environment (right). Localisation of Merlin is shown in green, the cell nuclei in red.

Picture: Max Planck Institute for Intelligent Systems

“The collective migration of cells and biological systems is one of the most important natural phenomena and occurs in nature at different levels and length scales. We have now identified the key molecular player and the related mechanism that controls the collective migration of epithelial cells, that is the covering layer of skin cells,” explains Prof. Dr. Joachim Spatz of the Institute for Physical Chemistry at Heidelberg University and the Max Planck Institute for Intelligent Systems. In their investigation, the researchers introduce a complete molecular mechanism that focuses on the protein called Merlin. The results link intercellular mechanical forces to collective cell movements and also demonstrate how local interactions give rise to collective dynamics at the multicellular level. “They create an analogy with what we already know about collective movements observable in both the biological and physical world,” explains Prof. Spatz.

The researcher compares the process of cell migration to running a marathon. “At the level of the organism, an individual in a collective consciously tries to align its movements with those of its neighbours, which involves orchestrated sensing and action.” Within a cellular collective, these two processes are linked via signal transduction pathways. There is a lead cell in the collective, similar to the leader in a marathon. It is mechanically connected to its follower cells by cell-to-cell contacts. The forward motion of the lead cell puts mechanical tension on the follower cells, according to Spatz. The merlin protein senses this mechanical tension and initiates spatially polarised following movement. This transmits the mechanical tension among the follower cells from one cell to the next. The follower cells respond by forming ‘leg-like’ protrusions directed at the lead cell in order to move forward.

“Until now it has been unclear what molecular link connects these two events, sensing and action,” says Joachim Spatz. “Our study now shows how the mechanosensitive Merlin protein converts cellular forces to collective cell motions by acting as a mechanochemical transducer. What’s truly astonishing is that Merlin is the only protein in the responsible signal network that conveys this property to cellular collectives – that there are no replacement mechanisms. If Merlin fails, the cells lose their ability to move collectively and trigger the related medically relevant, pathophysiological properties in the organism”.
The major player in the study, Merlin, is also a known tumour suppressor that is responsible for several types of cancer. Merlin is also a regulator of the Hippo pathway, an important signal pathway in biology that controls cell proliferation and organ size. It has been preserved in evolution since the emergence of primitive multicellular organisms. “It’s exciting to see a connection between these seemingly disparate fields, linked by a Merlin-mediated signalling mechanism,” says the researcher.

Researchers from the Hamamatsu Tissue Imaging and Analysis (TIGA) Center at the BioQuant Centre of Ruperto Carola and the National Center for Tumor Diseases (NCT) Heidelberg also participated in the study.

Original publication:
T. Das, K. Safferling, S. Rausch, N. Grabe, H. Boehm, J. Spatz: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology (published online 23 February 2015), doi: 10.1038/ncb3115

Contact:
Prof. Dr. Joachim Spatz
Institute of Physical Chemistry
Phone: +49 6221 54-4942
joachim.spatz@urz.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>