Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Houseplant pest gives clue to potential new anthrax treatment

25.02.2009
Researchers at the University of Warwick have found how a citric acid-based Achilles heel used by a pathogen that attacks the popular African Violet house plant could be exploited not just to save African Violets but also to provide a potentially effective treatment for Anthrax.

The researchers examined how a chemical structure is assembled in a bacterial pathogen called Pectobacterium chrysanthemi (Dickya dadantii) that afflicts plants – particularly the African Violet which often appears in many homes as a decorative houseplant.

Like many bacteria Pectobacterium chrysanthemi competes with its host for iron. Without a supply of this essential nutrient the bacterium cannot grow. The University of Warwick researchers Dr Nadia Kadi, Dr Daniel Oves-Costales, Dr Lijiang Song and Professor Gregory Challis worked with colleagues at St Andrews University to examine how a "siderophore", one of the key tools the bacterium uses to harvest iron is assembled. They discovered how an enzyme catalyst in the assembly of this particular siderophore – called achromobactin – binds citric acid, a vital iron-binding component of the structure. Their findings show that this chemical pathway could be blocked or inhibited to prevent the bacterium from harvesting iron, essentially starving it.

While an interesting piece of science in itself and of even more interest to owners of African Violet houseplants the Warwick research team found that this work also has major implications for the treatment of several virulent and even deadly mammalian infections including Anthrax.

A second piece of research conducted by three of the University of Warwick researchers (Dr Daniel Oves-Costales, Dr Lijiang Song and Professor Gregory L. Challis ) found that the deadly pathogen which causes Anthrax in humans uses an enzyme to incorporate citric acid into another siderophore that is very similar to the one used by the African Violet pathogen. The researchers showed that both enzymes recognise citric acid in the same way. This means a common strategy could be used to block both the Anthrax and African Violet pathogen siderophore synthesis pathways.

Professor Greg Challis University of Warwick said:

"Inhibiting this citric acid-based process could be even more effective in combating an anthrax infection than it would be in combating the African violet pathogen, because the African Violet pathogen has a second siderophore that can harvest iron from the host and could attempt to struggle on with just this, whereas the anthrax pathogen appears not to have such a back up mechanism."

This new discovery could lead to the design of drugs that might eliminate the anthrax pathogen's ability to harvest iron and stop an infection dead in its tracks. A respiratory anthrax infection is nearly always fatal but this discovery opens new possibilities for combating such infections.

The benefits of the discovery may even go beyond treatments for Anthrax. The researchers are now looking at similar enzymes involved in the assembly of citric acid-derived siderophores in E. coli and MRSA, which may offer further targets for drug development.

Professor Greg Challis | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>