Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hotspots for biogenesis of small RNA molecules in plant cells discovered

15.03.2012
Scientists at Heidelberg University study fine-tuning of protein production

Throughout their life, plants form leaves and side roots. These two types of organs have something in common: their development is finely tuned by small regulatory RNA molecules, the trans-acting short interfering RNAs (ta-siRNAs). Scientists Dr. Alexis Maizel and Virginie Jouannet at Heidelberg University‘s Centre for Organismal Studies were able to demonstrate how and where within the plant cell these ta-siRNAs are produced. They succeeded in identifying hotspots for the biogenesis of these special RNA molecules. The results of this study have been published in the “EMBO Journal”.


On the left, a normal mouse-ear cress (Arabidopsis) plant, and on the right a plant in which ta-siRNA formation is compromised. The leaf structure of the plant is abnormal. Credits: Alexis Maizel, Virginie Jouannet

The formation of plant organs depends on the presence of proteins that allow cells to divide and take on new shapes and characteristics. The most straightforward route to protein production begins when genes are activated and transcribed into messenger RNAs that are then translated into proteins. However, cells often fine-tune their population of proteins by producing short interfering RNAs (siRNAs): small regulatory molecules that dock onto messenger RNA and cause them to be broken down before they can be used for protein production. Researchers already knew that ta-siRNAs, a type of siRNA, fine-tune the formation of leaves and the growth of side roots by blocking the production of specific proteins. What remained unknown, however, was exactly where in the plant cell the ta-siRNAs were produced.

Ta-siRNAs are created from longer RNA molecules that are whittled down by a complex of other molecules. One essential component of this cutting machine is a protein called AGO7. The Heidelberg scientists have uncovered that AGO7 accumulates in foci, called siRNA bodies, located in the cytoplasm of the cells. SiRNA bodies also contain all the other enzymes needed for the formation of ta-siRNAs. “These foci are therefore hotspots for the formation of the siRNAs, that is the small, regulatory RNA molecules”, explains Virginie Jouannet, a PhD student in Dr. Maizel’s group. In addition, the researchers were able to show that AGO7 could not longer fulfil its functions when released from the siRNA bodies, resulting in problems in the development of the plant.

Two other observations caught the attention of the researchers. For one thing, the siRNA bodies are closely linked to the network of membranes that the cell uses to transport and secrete proteins. “Interestingly, these foci also host viruses and plants defend themselves against viruses using siRNAs”, says Dr. Maizel. “These results reveal a hitherto unknown role for membranes in the biogenesis of RNA and suggest that the generation of siRNA can occur only in specific locations of the cell.”

Dr. Maizel leads an independent research group at the Centre for Organismal Studies at Heidelberg University and is a member of the university’s CellNetworks Cluster of Excellence. Collaborating on the research project were scientists from the Institut des Sciences du Végétal at the Centre National de la Recherche Scientifique (CNRS) in Gif-sur-Yvette as well as the Institut Jean-Pierre Bourgin at the Institut National de la Recherche Agronomique (INRA) in Versailles (France).

For information online, see http://www.cos.uni-heidelberg.de/index.php/independent/a.maizel?l=_e

Original publication:
V. Jouannet, A.B. Moreno, T. Elmaan, H. Vaucheret, M.D. Crespi & A. Maizel: Cytoplasmic Arabidopsis AGO7 accu¬mulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis, The EMBO Journal, 10 February 2012, doi:10.1038/emboj.2012.20
Contact:
Dr. Alexis Maizel
Centre for Organismal Studies
Phone: +49 6221 54-6456
alexis.maizel@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>