Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot on the trail of metabolic diseases and resistance to antibiotics

28.03.2012
Proteins belonging to the large and important family of ABC transporters have been associated with metabolic diseases and can cause resistance to antibiotics.
Biochemists from the University of Zurich and the NCCR Structural Biology have succeeded in determining the atomic structure of a new ABC transporter. The insights gained could give rise to new therapies to treat multi-resistant bacteria, cystic fibrosis or gout, for instance.

ABC transporters are membrane proteins that actively pump a wealth of molecules across the membrane. Over 40 different ABC transporters perform vital functions in humans. Genetic defects in ABC transporters can trigger metabolic diseases such as gout, neonatal diabetes or cystic fibrosis, and certain ABC transporters also cause resistance to a wide range of drugs. In tumor cells, increased amounts of ABC transporters that pump chemotherapeutic substances out of the cell are often produced, thus rendering anticancer drugs ineffective. Analogous mechanisms play a key role in many pathogenic bacteria: ABC transporters carry antibiotics out of the cell – multi-resistant bacteria are the result.

Detailed side-view of the ABC transporter “TM287/288”. The transporter adopts is inward-facing state. The two different protein chains are marked in turquoise and pink. Picture: UZH


Transport mechanism: The inwardly open transporters can bind a molecule, such as an antibiotic (yellow star) – adopts its outward-facing state and releases the previously bound antibiotic. Picture:UZH

Despite their major importance in biology and medicine, so far the atomic structure of only a few ABC transporters has been decoded. Now, under the supervision of Markus Seeger and Professor Markus Grütter, PhD student Michael Hohl and senior scientist Christophe Briand have succeeded in cracking the atomic structure of the new ABC transporter “TM287/288”.

Illuminating asymmetry

The membrane protein originates from a thermophilic bacterium. Compared to structures already known, “TM287/288” has two different protein chains that assemble into a heterodimer. About half of the 40 human ABC transporters are heterodimers. “The asymmetries discovered enable us to consider the role of ABC transporters in a new light,” explains Seeger. “In the longer term, our results could help develop new medication against multi-resistant bacteria or tumors that are difficult to treat. They also make new approaches to curing or alleviating hereditary diseases possible,” concludes Grütter.

Literature:
Michael Hohl, Christophe Briand, Markus G. Grütter & Markus A. Seeger. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. In: Nature Structural & Molecular Biology, March 28, 2012. Doi: 10.1038/nsmb.2267

Contact:
Dr. Markus Seeger
Department of Biochemistry
University of Zurich
Tel.: +41 44 635 55 52
Email: m.seeger@bioc.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.bioc.uzh.ch
http://www.structuralbiology.uzh.ch

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>