Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Host Change Alters Toxic Cocktail

10.03.2011
Gene modification: Leaf beetle larvae attacking birch trees produce toxic cocktails that differ from the ones produced by conspecifics living on willows

Leaf beetles fascinate us because of their amazing variety of shapes and rich coloring. Their larvae, however, are dangerous plant pests. Larvae of the leaf beetle Chrysomela lapponica attack two different tree species: willow and birch. To fend off predator attacks, the beetle larvae produce toxic butyric acid esters or salicylaldehyde, whose precursors they ingest with their leafy food.


Leaf beetle Chrysomela lapponica
MPI for Chemical Ecology/Kirsch


Chrysomela lapponica larva on a birch leaf. The larva emits toxic secretions, visible as vesicles, from their defensive glands as a chemical protection against predators.
MPI for Chemical Ecology/Ploss

Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, now found that a fundamental change in the genome has emerged in beetles that have specialized on birch: The activity of the salicylaldehyde producing enzyme salicyl alcohol oxidase (SAO) is missing in these populations, whereas it is present in willow feeders. For birch beetles the loss of this enzyme and hereby the loss of salicylaldehyde is advantageous: the enzyme is not needed anymore because its substrate salicyl alcohol is only present in willow leaves, but not in birch.

Birch beetles can therefore save resources instead of costly producing the enzyme. First and foremost, however, the loss of salicylaldehyde also means that birch feeding populations do not betray themselves to their own enemies anymore, who can trace them because of the odorous substance. (PNAS Early Edition, DOI 10.1073/pnas.1013846108)

Defensive glands and toxic cocktails

Beetle larvae are part of a food chain. They are attacked by predatory insects and parasites, such as hover flies and bugs, as well as infested by bacteria and fungi. To protect themselves some leaf beetle larvae have developed interesting defense mechanisms, which function externally and metabolically: In case of danger, they emit substances from their defensive glands in form of vesicles (see picture; a short video is also available on http://www.ice.mpg.de/ext/735.html). These defensive secretions contain toxins that the larvae sequester from chemical precursors they have ingested with their plant food. The toxin precursors pass the larva’s midgut and reach the defensive glands via a sophisticated molecular transport system. Only a few chemical steps are necessary to produce the actual toxin in the gland.

Dependent on the host plant

Most leaf beetle species only attack one single plant species to feed and reproduce. On the one hand, the uptake of special plant molecules as substrates for toxin-producing enzymes is economical for the beetle larvae; on the other hand, however, the leaf beetles become strongly dependent on the host plant and its specific metabolites. Willows of the Salicaceae family have up to 5 percent glycosylated salicyl alcohol (Salicin) in their leaves, whereas birch trees do not contain these compounds at all. Hence, researchers in the Department of Bioorganic Chemistry of the institute in Jena have investigated how Chrysomela lapponica leaf beetles adapted to both birch and willow as host trees.

First they analyzed in a simple but decisive experiment whether the loss of salicylaldehyde in birch feeders is only due to the fact that the precursor Salicin is not available in birch. To test this they offered willow leaves to hungry leaf beetle larvae they had collected from birch trees. “The beetles were able to ingest Salicin from willow leaves; salicyl alcohol was also detected in their defensive secretions. However, the alcohol was not transformed to an aldehyde; this means that birch feeders lack the enzyme salicyl alcohol oxidase, which is responsible for the oxidation from alcohol to aldehyde,” explains Roy Kirsch, who addresses these topics in his PhD project.

Alternative splicing inactivates enzyme in birch feeders

Biochemical analyses revealed that gland secretions of salicylaldehyde producing willow beetles contain the enzyme salicyl alcohol oxidase in strikingly large amounts. The scientists labeled it SAO-W (W: willow). Using corresponding DNA sequence data they isolated and characterized the SAO-B (B: birch) encoding gene from birch feeders. They found that the amino acid sequences of both enzymes are 97 percent identical. However, SAO-B has become inactive because 27 amino acids at the beginning of the polypeptide chain are missing. This was confirmed after heterologous expression in an insect cell culture and subsequent functional tests. Further studies on the defensive glands of birch feeders showed that the amount of messenger RNA (mRNA) of the SAO-B gene was reduced by 1000 times compared to willow beetles; the protein and its enzyme activity were below the detection level. The lack of enzyme activity is caused by a mutation in the SAO-B gene located in the area of the second exon/intron junction. The mutation is responsible for changes in mRNA processing, so-called alternative splicing, which leads to the loss of 27 amino acids in the SAO-B enzyme.

The scientists conclude that, originally, Chrysomela lapponica used willows exclusively as host plants and later shifted to birch trees as well. “It is still unclear, whether the gene mutation has enabled the host plant shift from willow to birch or whether it was adapted in the course of evolution after the shift to birch had occurred,” says Wilhelm Boland, the leader of the study. Genetic analysis of further SAO genes from Chrysomela leaf beetle species will allow a better understanding of these processes. [JWK, AO]

Original Publication:
Kirsch, R., Vogel, H., Muck, A., Reichwald, K., Pasteels, J. M., Boland, W.
Host plant shifts affect a major defense enzyme in Chrysomela lapponica.
Proceedings of the National Academy of Sciences USA, Early Edition, DOI 10.1073/pnas.1013846108.
Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Phone: +49 (0)3641- 57-1200, -1201; e-mail: boland@ice.mpg.de
Pictures:
Download: http://www.ice.mpg.de/ext/735.html
or contact
Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Phone: +49 (0)3641- 57 2110; e-mail: overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>