Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone clue to root growth

08.07.2009
Plant roots provide the crops we eat with water, nutrients and anchorage. Understanding how roots grow and how hormones control that growth is crucial to improving crop yields, which will be necessary to address food security and produce better biofuels.

Now an international group of scientists, led by the Centre for Plant Integrative Biology at The University of Nottingham, has shed light on how a plant hormone is crucial in controlling the growth of plant roots.

Plant growth is driven by an increase in two factors: the number of cells, and their size. It is already known that the plant hormone gibberellin controls how root cells elongate as the root grows in the model plant Arabidopsis thaliana. Now a paper appearing in Current Biology describes for first time how this hormone also regulates the number of cells in the root in order to control root growth.

Gibberellin normally acts by signaling the removal of proteins which repress growth, and so promotes root cell production. The new research shows that mutant plants that do not produce gibberellin are unable to increase their cell production rate and the size of the root meristem, the zone of cell proliferation.

Plants in which the cells in the meristem were made to express a mutant version of the growth-repressing protein GAI not degraded by gibberellin showed disrupted cell proliferation. Expressing this mutant form, gai, in only one tissue, the endodermis (the innermost layer of the root cortex of a plant), was sufficient to stop the meristem enlarging. In effect, the rate of expansion of dividing endodermal cells dictates the equivalent rate in other tissues.

This research was headed by Dr Susana Ubeda-Tomás and Professor Malcolm Bennett of the Centre for Plant Integrative Biology, in collaboration with scientists in Nottingham, Cambridge, Edinburgh, Spain, Belgium and Sweden.

Professor Malcolm Bennett, Biology Director for the Centre for Plant Integrative Biology and Professor of Plant Sciences in the Division of Plant and Crop Sciences, said: “We have shown that gibberellin plays a crucial role in controlling the size of the root meristem, and that it is the endodermis which sets the pace for expansion rates in the other tissues.

“Understanding precisely how hormones regulate plant growth is one of the key areas of fundamental plant biology which will underpin crop improvements in the future.”

The Centre for Plant Integrative Biology (CPIB) is funded by the Systems Biology joint initiative of BBSRC and EPSRC, which has provided £27 million for six specialised centres across the UK.

The Division of Plant and Crop Sciences at The University of Nottingham is one of the largest communities of plant scientists in the UK. Around 160 people work in the Division, which welcomes visiting scientists from all over the world, reinforcing its reputation as a world renowned centre.

Dr Susannah Lydon | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>