Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopping Protons

14.04.2011
Dr. Burkhard Schmidt simulates proton transfer in amino acids and small peptides on MATHEON. Proton transfer plays a role in energy conversion within solar cells and fuel cells, for example, and applies to the energy flow in batteries. It is even relevant to the development of new drugs.

How do you simulate the behaviour of protons and amino acids on the computer? How do you depict experiments to study their behaviour as more or less water is introduced? These questions may seem trivial in this age of powerful computers. Yet, it turns out this task will remain almost impossible to solve until new mathematical algorithms are found. Protons simply behave too quickly and too “unpredictably”.


Snapshot from ab Initio Molecular Dynamic Simulation. © Schmidt

In the DFG Research Centre MATHEON project “Modelling and optimizing functional molecules“, Dr. Burkhard Schmidt is working on this problem under the direction of Prof. Christof Schütte. He is using computer simulations to investigate the role of water as a solvent when it is added to amino acids or peptides in tiny steps. His main objective is to research the proton transfer between two end-groups – which leads to the formation of so-called zwitterions – and the proton transfer between appropriate side chains – which leads to the formation of so-called salt bridges.

Schmidt’s work is still at the fundamental research level, but his results will be of enormous significance to many fields. Proton transfer plays a role in energy conversion within solar cells and fuel cells, for example, and applies to the energy flow in batteries. It is even relevant to the development of new drugs.

A zwitterion is a molecule that has two or more functional groups, where one group is positively charged and another negatively charged. The molecule is therefore electrically neutral overall. Amino acids are natively electrically neutral molecules. If you dissolve them in water, however, the water protons start to ‘hop’, causing one end of the amino acid to become negatively charged and the other end to become positively charged. The protons involved in this process remain constantly in motion, forever forming new bonds. If protons hop all the way along neighbouring molecules, then charges can also be transported over nanometre-scale distances in so-called water bridges or “water wires”. All this happens on extremely short time scales.

Dr. Schmidt believes his project will help understand proton transfer mechanisms on a microscopic level. He is currently focusing on amino acids and small peptide chains. The researcher describes his approach: “Although the vast majority of biological processes occur in watery solution, our studies start by looking at isolated amino acids and peptides, in order to distinguish intramolecular from intermolecular processes. Then we gradually add individual water molecules to our simulations. That way, we can study the influence of the solvent in a controlled manner.” It is an ambitious project, since such studies can only be performed in computer simulations, and would be monumentally difficult or simply impossible as real experiments.

The scientist intends to explain, for example, how many water molecules are required to make amino acids or peptides change from neutral to zwitterionic form. He also intends to study what happens to a salt bridge as water molecules are added. “Furthermore, it is interesting to simulate these processes in their time-dependency, to be able to study the timescales of the investigated processes as well. Essential questions include how fast protons can be released from or deposited onto the appropriate side chains, or on what timescale protons are transferred between protein and water, and how fast protein transport is along water bridges,” Burkhard Schmidt explains.

In his studies, Schmidt will employ methods to calculate the energies or forces from the electron structure at every time step of the simulation. This distinguishes his work from “conventional” computer simulations, in which empirical models are applied to calculate energies and forces between the atoms. “Aside from the questionable accuracy and applicability of such empirical models, their fundamental limit is that they cannot describe the breaking and forming of chemical bonds. I’m not satisfied with that,” he says. His current research builds upon a previous project in which Dr. Schmidt studied the reaction of a proton and an electron in a water cluster. (Cluster=microdroplet)

Thanks to his mathematical/physical methods, Burkhard Schmidt is already able to calculate chemical processes a number of picoseconds long (1 picosecond = 0.000 000 000 001 second) on mainframe computers. “That’s a lot already, but I would like to reach up to nanoseconds (0.000 000 001 second),” the scientist concludes.

More information:
Dr. Burkhard Schmidt,
phone: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>