Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Team Discovers How DNA Changes

15.04.2011
Newly revealed process has implications for understanding cancers, psychiatric disorders and neurodegenerative diseases

Using human kidney cells and brain tissue from adult mice, Johns Hopkins scientists have uncovered the sequence of steps that makes normally stable DNA undergo the crucial chemical changes implicated in cancers, psychiatric disorders and neurodegenerative diseases. The process may also be involved in learning and memory, the researchers say.

A report on their study appears online April 14 in Cell.

While DNA is the stable building block of all of an individual’s genetic code, or genome, the presence or absence of a methyl group at specific locations chemically alters DNA and changes the expression of the genes. In a series of experiments, the Johns Hopkins team identified a step-by-step process involving a previously unknown step and two molecules for DNA to change from a methylated to demethylated state. Both methylation and demethylation have long been linked to genetic alterations and a wide range of diseases.

“Anything we can learn from these studies about how to manipulate the process of changing DNA methylation status is going to have implications for human development and disease, including cancer and degenerative disorders,” says Hongjun Song, Ph.D., professor of neurology and neuroscience and director of the Stem Cell Program in the Institute for Cell Engineering, the Johns Hopkins University School of Medicine.

First, using human kidney cells in a dish, the Hopkins team focused its investigation on a tiny region of DNA in the cells’ nuclei, specifically watching the actions of one particular chemical base known as cytosine (C). The team added different chemicals to force methylation changes and after watching the fate of methylated cytosine (mC) for two days, and noting that nothing had changed, they then added a protein called TET1 to the cell. As a result, some of the mC became hydroxylmethylated (hmC) and some reverted to plain C, indicating loss of the methyl-group from C in the DNA.

“What this told us was TET1 promotes this process of DNA changing status from methylated to demethylated,” Song says.

While only about five percent of human cells progress from hmC to C under natural conditions, the researchers found they could enhance the demethylation process by adding another protein called Apobec1.

“That suggested another clear step in DNA demethylation,” Song says. “Cells go from mC to hmC by TET1, and then from hmC to C involving Apobec 1.”

Next, they followed up on their own previously published work showing that electrical stimulation like that used in electroconvulsive therapy (ECT) resulted in increased brain cell growth in mice, which likely was an effect of changes in DNA methylation status. The researchers used a genetic tool and PCR-based approach to amplify a tiny region of the genome in dozens of mice, some exposed to ECT-like electrical stimulation and some not, to compare the status of cytosine at similar stretches of DNA in brain tissue. By using genetic sequencing technology to analyze the various states of methylation – simple C, methylated C, or hydroxylmethlyated Cs – in the specific reigons of DNA from brain cells of ECT-exposed mice versus other animals, they found evidence that ECT indeed induces DNA demethylation and identified TET1 as a critical factor for this to happen.

“By identifying two molecules and tying together two pathways needed for DNA methylation status to change, we believe we have shown a unified mechanism that regulates DNA as it goes from a methylated state to a demethylated state,” Song says. “This new knowledge gives us an entry point to someday manipulating this fundamentally important process for treating patients with diseases associated with epigenetic abnormality.”

Support for this research came from the National Institutes of Health, Johns Hopkins Brain Science Institute, National Alliance for Research on Schizophrenia and Depression, and Adelson Medical Research Foundation

Authors of the paper, in addition to Hongjun Song are Junjie U. Guo, Yijing Su, Chun Zhong, and Guo-li Ming, all of Johns Hopkins.

On the Web:
Song lab: http://neuroscience.jhu.edu/HongjunSong.php
Cell: http://www.cell.com/current

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>