Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019

Using human cancer cells, tumor and blood samples from cancer patients, researchers at Johns Hopkins Medicine have uncovered the role of a neurotransmitter in the spread of aggressive cancers. Neurotransmitters are chemical "messengers" that transmit impulses from neurons to other target cells.

The work, described in the April 9 issue of the journal Cell Reports, found that this neurotransmitter, called N-acetyl-aspartyl-glutamate (NAAG) NAAG is more abundant in cancers with a tendency to grow and spread rapidly - or so-called higher grade cancers - than in lower grade tumors, making it a potential marker for tumor progression or regression during cancer therapy, the researchers say.


Using human cancer cells, tumor and blood samples from cancer patients, researchers at Johns Hopkins Medicine have uncovered the role of a neurotransmitter in the spread of aggressive cancers. Neurotransmitters are chemical 'messengers' that transmit impulses from neurons to other target cells.

Credit: Anne Le

The experiments also demonstrated that NAAG is a source of glutamate, a chemical that cancer cells use as building blocks to survive, in tumors that express an enzyme called glutamate carboxypeptidase II (GCPII). The group also discovered that stopping the GCPII from being active by using a drug called 2-PMPA to treat human ovarian tumors implanted in ovaries of mice, reduced tumor weights and glutamate concentrations.

They noted that targeting both GCPII and glutaminase, the enzyme that converts glutamine to glutamate, resulted in a more substantial tumor reduction in patient-derived pancreatic cancer tumors implanted in pancreas of mice, since it attacked the production of glutamate from both glutamine and from NAAG.

"Our study suggest that NAAG serves as an important reservoir to provide glutamate to cancer cells through GCPII, when glutamate production from other sources is limited," says senior study author Anne Le, M.D., H.D.R, an associate professor of pathology and oncology at Johns Hopkins. GCPII inhibitor is found to be well-tolerated in clinical trials for pain, so we should be able to move it into clinical trials for cancer therapy quickly."

Le and colleagues in her Cancer Metabolism Laboratory conducted several laboratory experiments to study NAAG. They first used a technique called mass spectroscopy to measure break down products produced from amino acid glutamine, finding that NAAG production is more abundant in advanced human Burkitt lymphoma cells transformed by the cancer gene MYC than in those not transformed by MYC.

They also found NAAG more abundant in human high-grade ovarian cancer cells than in human primary ovarian tumors, and in consistently higher concentrations in patient samples of glioblastoma brain tumors compared to slower-growing meningioma brain tumors.

Le's team then looked to see whether overall levels of NAAG in human patients correlated with the grades of their tumors. Measuring concentrations of NAAG in blood plasma samples from brain tumor patients, the investigators found significantly higher NAAG concentrations in samples from patients who had glioblastoma multiforme, the most aggressive brain cancer, than in patients who had gliomas or meningiomas.

Using human Burkitt's lymphoma tumor model in mice, the researchers also found NAAG levels rose and fell in response to tumor growth and regression.

"Together, these findings strongly link plasma concentrations of NAAG with tumor growth rates, and suggest that measurements of NAAG in peripheral blood should be further explored for timely monitoring of tumor growth during cancer treatment," Le says. "These results don't make NAAG a potential diagnostic marker, but a prognostic marker, a potentially valuable way for noninvasive assessments of tumor progression."

Previous studies directed by Le, and described in 2012 in the journal Cell Metabolism, and in 2016 in the journal Proceedings of the National Academy of Sciences found that glutamine metabolism plays an important role in cancer growth.

"Seven years ago, we found that glutamine was a big deal in cancer metabolism, and inhibiting the conversion of glutamine to glutamate was the right target to curb cancer growth," Le says. "It turns out, that's correct. But it's not enough, because cancer cells have another way to make glutamate through this hidden reservoir. Targeting both pathways could improve cancer treatments," she adds.

Le cautions that these findings are only applicable to cancers that express GCPII. "For GCPII-negative cancers, she says NAAG could be taking on another role to promote cancer cell growth through an alterative pathway, but studies would need to be done to confirm that idea

###

Study coauthors were Tu Nguyen, Brian James Kirsch, Ryoichi Asaka, Karim Nabi, Addison Quinones, Jessica Tan, Marjorie Justine Antonio, Felipe Camelo, Ting Li, Stephanie Nguyen, Giang Hoang, Kiet Nguyen, Sunag Udupa, Christos Sazeides, Yao-An Shen, Amira Elgogary, Juvenal Reyes, Kaisom Lee Chaichana, Jin G. Jung, Tian-Li Wang, and Edward Gabrielson of the Johns Hopkins University School of Medicine; Michael J. Betenbaugh of the Johns Hopkins University Whiting School of Engineering; Liang Zhao and Andre Kleensang of the Johns Hopkins Bloomberg School of Public Health; Thomas Hartung of the Johns Hopkins Bloomberg School of Public Health and the University of Konstanz, in Germany; and Suely K. Marie of the University of São Paulo in Brazil.

The work was supported by the National Institutes of Health (grants R01-CA193895, R01-CA12314, 1S10OD025226-01 and UL1 TR 001079), the Hopkins-Allegheny Health Network Cancer Research Fund and the Doris M. Weinstein Pancreatic Cancer Research Fund.

Valerie Mehl | EurekAlert!
Further information:
https://www.hopkinsmedicine.org/news/newsroom/news-releases/hopkins-researchers-id-neurotransmitter-that-helps-cancers-progress

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>