Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hoping for a fluorescent basket case

16.11.2009
How HIV is assembled and released from infected cells

Although recent advances have raised hopes that a protective vaccine can be developed, acquired immunodeficiency syndrome (AIDS) remains a major public health problem. Much has been learned about HIV-1, the virus that causes the disease.

However, basic aspects of person-to-person transmission and of the progressive intercellular infection that depletes the immune system of its vital T cells remain imperfectly understood. In a paper published today in the online journal PloS Pathogens, Professor Don Lamb's group at the Ludwig-Maximilians-Universitaet (LMU) in Munichs's Department of Chemistry and Biochemistry, together with colleagues in Heidelberg, describe in detail how new virus particles assemble at the membrane of infected cells, and are released to attack healthy cells nearby. The new findings could help provide clues as how to interrupt the process of intercellular viral spread. (PLoS Pathogens, 6 November 2009)

As many of us have learned from personal experience, computer viruses, which contain short pieces of malicious code and arrive in anonymous packages, can gum up data-processing routines. This definition also fits their biological counterparts, which generally comprise compact genomes packed in protein shells, and enter cells via specific portals. For example, the retrovirus HIV-1 has only nine genes in its RNA genome and infects cells by binding to specific receptors. Inside the cell, the genetic material is copied and 15 viral proteins are synthesized. They interact to pack the genomic RNA into new viral particles. These are then extruded from the cell, wrapped in an envelope of membrane bearing viral proteins that direct the parcel to the next susceptible cell.

The basket that encases the viral RNA is constructed from the Gag protein. Gag is highly versatile: It can bind to the inner face of the cell membrane, to the viral RNA, to itself (to form the shell around the RNA) and to cellular proteins that extrude the newly assembled particle into the extracellular medium. Indeed, Gag can form virus-like particles in the absence of other viral proteins. For their experiments, Professor Lamb's team used cultured cells containing eight of the HIV-1 genes, one of which coded for a fluorescent form of Gag.

"We adopted our custom-built microscope specifically for the experiment, visualizing Gag in the cellular plasma membrane by Total Internal Reflection Fluorescence Microscopy while alternately switching to Wide-Field Fluorescence Microscopy to get a deeper view into the cell", explains Lamb. This allowed the team to track single Gag particles and follow the assembly process, in real time.

Once virus assembly is switched on within an infected cell, the membrane surface of the cell becomes covered with viruses in one to two hours. Each virus is assembled individually at the plasma membrane on the time scale of minutes, rejecting the idea of a reusable assembly platform that is believed to exist for other viruses. By tracking individual viruses, the scientist could follow the processes of assembly from initiation of assembly through to release, learning that it takes about 25 minutes to produce an HIV virus. Hence, a lag of 15-20 minutes precedes release of the enveloped virus, presumably because it takes time for the hijacked cellular budding machinery to close of the virus and release it into to the extracellular medium.

"Using a 'photoconvertible' version of the famous green fluorescent protein – whose discovery and utilization in biological systems were honored with the Nobel prize in chemistry in 2008 – attached to the Gag protein, we were able to convert the color of membrane bound Gag proteins from green to red", says Lamb. "Thereby, we could determine that viruses were assembly from protein delivered directly from the cytosol or had only arrived recently to the plasma membrane." The new findings add an important dynamic dimension to the process of intercellular viral spread. If they help find ways to interrupt it, HIV-1 could finally be stamped as "undeliverable". (PH)

Publication:
"Dynamics of HIV-1 assembly and release"
Sergey Ivanchenko, William J. Godinez, M. Lampe, H.G. Kräusslich, R. Eils, K. Rohr, C. Bräuchle, B. Müller, D.C. Lamb

PLoS Pathogens, 6 November 2009

Contact:
Professor Dr. Don C. Lamb
Department of Chemistry and Biochemistry
Excellence clusters "Nanosystems Initiative Munich" (NIM) and "Center for Integrated Protein Science Munich" (CiPSM) at LMU Munich
Tel.: +49 (0) 89 / 2180 - 77564
E-mail: Don.Lamb@cup.uni-muenchen.de

Dr. Don C. Lamb | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>