Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Homebound termites answer 150-year-old evolution question

08.10.2009
Evolution of sterility potentially explained among social insects

Staying at home may have given the very first termite youngsters the best opportunity to rule the colony when their parents were killed by their neighbors. This is according to new research supported by the National Science Foundation and published today in the Proceedings of the National Academy of Sciences.

Researchers say the incentive to remain home with siblings and inherit the parents' estate could be the missing link to a question posed nearly 150 years ago by evolution theorist Charles Darwin. He wondered how natural selection could favor traits that reduce reproductive success among worker offspring in highly social insects.

This is especially curious because Darwin argued for small biological changes that result in greater chances of survival and successful reproduction over time. But social insects, ants, bees, wasps and termites colonies in particular can have over a million sterile and/or non-reproductive workers and soldiers, which seemed counterintuitive.

Research conducted by biologists at the University of Maryland, College Park shows that when two neighboring termite families meet within the same log, one or both families' kings and queens are killed and a new, merged, cooperative colony results. Replacement "junior" kings and queens then develop from either or both colonies' non-reproducing, worker offspring, and termites from the two families may even interbreed.

Pheromones produced by healthy kings and queens that normally suppress gonad development in worker or "helper" classes are absent or reduced when kings and queens are killed. As a result, suppression is lifted and nonrelated, "sterile," helper offspring from both colonies are able to become new "reproductives" and assume the throne.

"Assassination of founding kings and queens may have driven young termite offspring to remain as non-reproducing workers in their birth colonies," says lead researcher and University of Maryland professor Barbara L. Thorne. Rather than risking dangerous attempts at independent colony initiation outside the nest, remaining at home may have given these first termites a better opportunity to become reproducers by inheriting their parents' throne.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>