Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Homebound termites answer 150-year-old evolution question

08.10.2009
Evolution of sterility potentially explained among social insects

Staying at home may have given the very first termite youngsters the best opportunity to rule the colony when their parents were killed by their neighbors. This is according to new research supported by the National Science Foundation and published today in the Proceedings of the National Academy of Sciences.

Researchers say the incentive to remain home with siblings and inherit the parents' estate could be the missing link to a question posed nearly 150 years ago by evolution theorist Charles Darwin. He wondered how natural selection could favor traits that reduce reproductive success among worker offspring in highly social insects.

This is especially curious because Darwin argued for small biological changes that result in greater chances of survival and successful reproduction over time. But social insects, ants, bees, wasps and termites colonies in particular can have over a million sterile and/or non-reproductive workers and soldiers, which seemed counterintuitive.

Research conducted by biologists at the University of Maryland, College Park shows that when two neighboring termite families meet within the same log, one or both families' kings and queens are killed and a new, merged, cooperative colony results. Replacement "junior" kings and queens then develop from either or both colonies' non-reproducing, worker offspring, and termites from the two families may even interbreed.

Pheromones produced by healthy kings and queens that normally suppress gonad development in worker or "helper" classes are absent or reduced when kings and queens are killed. As a result, suppression is lifted and nonrelated, "sterile," helper offspring from both colonies are able to become new "reproductives" and assume the throne.

"Assassination of founding kings and queens may have driven young termite offspring to remain as non-reproducing workers in their birth colonies," says lead researcher and University of Maryland professor Barbara L. Thorne. Rather than risking dangerous attempts at independent colony initiation outside the nest, remaining at home may have given these first termites a better opportunity to become reproducers by inheriting their parents' throne.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>