Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV -- Geneticists map human resistance to AIDS

29.10.2013
Do our genes hold the key to future AIDS therapies? Using a supercomputer, scientists analyzed the genomes of thousands of strains of the HIV virus and have produced the first map of human AIDS resistance

The key to future HIV treatment could be hidden right in our own genes. Everyone who becomes infected deploys defense strategies, and some even manage to hold the virus at bay without any therapy at all. This immune system struggle leaves its mark within the pathogen itself – genetic mutations that indicate how the virus reacted to its host's attacks.

Scientists from EPFL and the Vaud university hospital center (UNIL-CHUV) retraced the entire chain of events in these battles, from the genome of the virus to the genome of the victim. They have created the first map of human HIV resistance. The goal of their research, which has been published in the journal eLife on the 29th of October, is to find new therapeutic targets and to enable individualized treatment strategies.

The human immune system is constantly developing strategies to fight HIV. Unfortunately, "the genome of the virus also changes rapidly, at a rate of millions of mutations a day," explains Jacques Fellay, co-author and EPFL researcher. In the majority of cases, the pathogen finds an effective strategy via this natural selection.

Sometimes the virus is faced with a tougher opponent. It resists, but its ability to replicate is compromised. "The virus survives but replicates more slowly, and thus its capacity for destruction is in some sense neutralized," says the scientist.

By studying strains of HIV that have been living in human hosts, the researchers can identify specific genetic mutations. These are like scars that each bear witness to a very specific attack launched by the immune system. What are the human genes involved in these defense strategies? And which, among all our genetic variations, predispose us to increased HIV resistance or, on the contrary, increased vulnerability? The scientists developed a method that allowed them to find answers to these questions.

A supercomputer, 1,071 patients and millions of combinations

To draw up the first map of human HIV resistance, the researchers had to analyze an enormous amount of data. They studied various strains of HIV from 1,071 seropositive individuals. They crossed more than 3,000 potential mutations in the viral genome with more than 6 million variations in the patients' genomes. Using supercomputers, they studied all these possible combinations and identified correspondence between patients.

"We had to study the virus before the patient had undergone treatment, which is far from easy," says Fellay. This meant they had to search in data banks established in the 1980s, before effective therapies were made available.

This novel, indirect method made it possible to obtain the most complete global overview to date of human genes and their implications in terms of HIV resistance. It allows us to not only better understand how we defend ourselves from attack but also how the virus adapts itself to our defense mechanisms. "We now have a true database that tells us which human genetic variation will induce which kind of mutation in the virus", explains Amalio Telenti, co-author and UNIL-CHUV researcher.

Therapies inspired by our own natural defense

This research has two major implications. New therapies could be developed based on studying humans' natural defenses, particularly those that result in a reduced replication of the virus. In addition, the scientists hope that by profiling the genome of HIV-infected individuals, it will be possible to develop individually targeted treatments that take into account the patients' genetic strengths and weaknesses.

Jacques Fellay | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: EPFL Geneticists HIV genetic mutation genetic variation immune system

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>