Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitting snooze on the molecular clock: Rabies evolves slower in hibernating bats

21.05.2012
The rate at which the rabies virus evolves in bats may depend heavily upon the ecological traits of its hosts, according to researchers at the University of Georgia, the U.S. Centers for Disease Control and Prevention and Katholieke Universiteit Leuven in Belgium.
Their study, published May 17 in the journal PLoS Pathogens, found that the host's geographical location was the most accurate predictor of the viral rate of evolution. Rabies viruses in tropical and sub-tropical bat species evolved nearly four times faster than viral variants in bats in temperate regions.

"Species that are widely distributed can have different behaviors in different geographical areas," said Daniel Streicker, a postdoctoral associate in the UGA Odum School of Ecology and the study's leader. "Bats in the tropics are active year-round, so more rabies virus transmission events occur per year. Viruses in hibernating bats, on the other hand, might lose up to six months' worth of opportunities for transmission."

Understanding the relationship between host ecology and viral evolution rates could shed light on the transmission dynamics of other viruses, such as influenza, that occur across regions, infect multiple host species or whose transmission dynamics are impacted by anthropogenic change.

The team's findings could eventually help public health officials better predict when rabies virus transmission could happen in different environments and as environments change, but Streicker cautions that more research into the rabies virus genome and bats' overwintering ecology is needed.

"If viral evolution is faster, it could potentially lead to greater genetic diversity in crucial parts of the viral genome that allow it to shift hosts," he said. "For rabies, we don't yet know what those are, so identifying them will be key. Similarly, before understanding whether climate change will speed viral evolution, we need a better idea of how environmental changes will influence host ecology and behavior."

Evolutionary biologists have long recognized that molecular evolution proceeds in a largely clock-like manner, with mutations accumulating at a fairly constant rate over time. This "molecular clock" allows for powerful inferences—from dating the origins of species to the origins of epidemics. However, the rate at which the clock ticks varies dramatically among species; much research has focused on what causes these differences.

For RNA viruses such as rabies, understanding the rate variability has practical implications, since faster evolution can enable viral emergence in new species or allow a virus to evade its host's immune defenses. However, nearly all past studies compared viruses of completely different families and were therefore limited to focusing on viral structural traits. Since few opportunities existed to study the evolution of similar viruses in different host species, the role of the host had been almost completely neglected.

Streicker set out to better understand the tempo of the evolution of rabies viruses in bats, and specifically what, if any, role the host species played.

To conduct the study, Streicker and his colleagues compiled a database of rabies virus genetic sequences from infected bats in the U.S. and South America, representing 21 different variants of the virus. They also collected information on the biology and ecology of the different bat species that served as viral hosts. They looked at the evolutionary history of the different bat species; their overwintering behavior (whether the bats hibernated, went through periods of torpor or remained active during the winter); their metabolic rates; and their migration habits (whether they engaged in long distance migration). They also classed the bats by climatic region and whether they were solitary or roosted in colonies.

Their analysis of this enormous database revealed extreme variability in the rate of evolution in different rabies viruses, comparable to the differences seen between viruses of entirely different families. The analysis also suggested that viral genetic traits were not chiefly responsible for this variation since rates seemed to shift freely throughout the ancestral history of the rabies virus as it jumped into new bat species.

"Earlier studies led to the conclusion that viral genomic traits are driving the evolution rate," Streicker said. "It turns out that's not the whole story. In this case, host biology plays an important role."

The trait that best correlated with the rate of viral evolution was not the host's evolutionary history. It was its climatic region, which affects the bats' behavior.

Rabies in tropical bats goes through more generations per year than in temperate bats, a mechanism also hypothesized to accelerate how quickly the molecular clock ticks in free-living tropical plants and animals. The rapid evolution in rabies viruses provided the researchers with an opportunity to examine one of the mechanisms thought to drive the differences in evolution and species diversity across latitudes from the poles to the tropics.

"This is just another example of how the fast pace of evolution in RNA viruses makes them exceptional tools for understanding simultaneously ecological and evolutionary processes," Streicker said.

The paper's coauthors were Philippe Lemey of KU Leuven and Andres Velasco-Villa and Charles E. Rupprecht of the CDC's Rabies Program. The research was supported by grants from UGA, the National Science Foundation and the European Research Council. For the study, "Rates of viral evolution are linked to host geography in bats," see http://dx.plos.org/10.1371/journal.ppat.1002720.

Daniel Streicker | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>