Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitting moving RNA drug targets

27.06.2011
By accounting for the floppy, fickle nature of RNA, researchers at the University of Michigan and the University of California, Irvine have developed a new way to search for drugs that target this important molecule. Their work appears in the June 26 issue of Nature Chemical Biology.

Once thought to be a passive carrier of genetic information, RNA now is understood to perform a number of other vital roles in the cell, and its malfunction can lead to disease.

The versatile molecule also is essential to retroviruses such as HIV, which have no DNA and instead rely on RNA to both transport and execute genetic instructions for everything the virus needs to invade and hijack its host. As more and more links to disease are discovered, the quest for drugs that target RNA is intensifying.

Searching for such drugs is not a simple matter, however. Most of today's drug-hunting tools are designed to find small molecules that bind to protein targets, but RNA is not a protein, and it differs from proteins in many key features. "So there's a growing need for high-throughput technologies that can identify compounds that bind RNA," said Hashim M. Al-Hashimi, the Robert L. Kuczkowski Professor of Chemistry and Professor of Biophysics at U-M.

Al-Hashimi and coworkers adapted an existing computational technique for virtually screening libraries of small molecules to determine their RNA-binding abilities. In this approach, the shape of a target molecule is first determined by X-ray crystallography or NMR spectroscopy; next, researchers run computer simulations to compute how well various small molecules---potential drugs, for example---nestle into and bind to the target structure. RNA presents a major challenge to this methodology because it doesn't have just one configuration; it's a floppy molecule, and depending on which small molecule it binds, it can assume vastly different shapes.

It once was thought that encounters with drug molecules actually caused RNA's shape changes, and that it was impossible to predict what shape an RNA would adopt upon binding to a given small molecule. However, in earlier research, Al-Hashimi's team challenged this conventional "induced-fit" concept by showing that the RNA, on its own, can dance through the various shapes that it adopts when bound to different drugs. The team discovered that each drug molecule simply "waits" for the RNA to morph into its preferred shape and then latches onto it.

The researchers' previous work involved creating "nano-movies" of RNA that capture this dance of shape changes. In this new study, the researchers froze individual "frames" from the nano-movies, each showing the RNA in a different conformation, and subjected each of them to virtual screening. To test the method in the "real world," they first tried it on compounds already known to bind a particular RNA molecule from HIV called TAR.

"We showed that by virtually screening multiple snapshots of TAR, we could predict at a useful level of accuracy how tightly these different compounds bind to TAR," Al-Hashimi said. "But if we used the conventional method and virtually screened a single TAR structure determined by X-ray crystallography or NMR spectroscopy, we failed to predict binding of these drugs that we know can bind TAR."

Next, the researchers tried using the method to discover new TAR-targeting drugs. They screened about 51,000 compounds from the U-M Life Sciences Institute's Center for Chemical Genomics. "From this relatively small compound library, we ended up identifying six new small molecules that bind TAR and block its interaction with other essential viral molecules," Al-Hashimi said.

What's more, one of the six compounds, netilmicin, showed a strong preference for TAR.

"Netilmicin specifically binds TAR but not other related RNAs," said former graduate student Andrew Stelzer. "We were very pleased with these results because one of the biggest challenges in RNA-targeted drug discovery is to be able to identify compounds that bind a specific RNA target without binding other RNAs. The ability of netilmicin to specifically bind TAR provides proof of concept for this new technology," said Stelzer.

Further experiments showed that, for the six potential drug molecules, the method not only successfully predicted that they would bind to TAR, it also showed---with atomic-level accuracy—where on the RNA molecule each drug would bind.

Al-Hashimi then turned the six drug candidates over to David Markovitz, a professor of infectious diseases at the U-M Medical School, who tested them in cultured human T cells infected with HIV. The point of this experiment was to see if the drugs would prevent HIV from making copies of itself, an essential step in the disease process.

"Netilmicin did in fact inhibit HIV replication," Markovitz said. "This result demonstrates that using an NMR spectrometer and some computers we can discover drugs that target RNA and are active in human cells."

In addition to testing compounds in existing molecular libraries, the virtual screening technique can be used to explore the potential of new compounds that have not yet been synthesized, Al-Hashimi said. "This opens up a whole new frontier for exploring RNA as a drug target and finding new compounds that specifically target it."

In addition to Al-Hashimi, Stelzer and Markowitz, study authors are U-M graduate students Mike Swanson, Marta Gonzales-Hernandez and Janghyun Lee; U-M undergraduate student Jeremy Kratz; U-C Irvine graduate student Aaron Frank; and U-C Irvine associate professor Ioan Andricioaei.

Funding was provided by the National Institutes of Health, the Michigan Economic Development Corporation and Michigan's Technology Tri-Corridor.

The enabling technology has been exclusively licensed to Nymirum, a drug discovery company that has partnerships with Fortune 500 pharmaceutical and medical companies.

More information:

Hashim Al-Hashimi: https://www.chem.lsa.umich.edu/chem/faculty/facultyDetail.php?Uniqname=Hashimi

Nature Chemical Biology: http://www.nature.com/nchembio/index.html

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>