Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitting back at 'wiretapping' parasite

25.07.2012
Dodder vines are parasitic plants that suck water, nutrients and information from other plants as they spread over them.
Plant biologists at the University of California, Davis, have now shown that they can make plants resistant to dodder by attacking the junctions where the parasite taps into the host.

"We think that this will translate into other parasitic plants," said Neelima Sinha, professor of plant biology at UC Davis, who led the project. The work was published online July 20 by the journal Plant Cell.

Sinha's lab uses dodder as a model for more serious parasites such as Striga, which attacks the roots of maize, sorghum and other African crops.

In earlier work, Sinha and colleagues found that when dodder taps into a host plant, it takes up RNA molecules that can act as chemical messengers in the host along with water, sugars and other nutrients. These circulating RNA molecules act as messengers inside plants, for example coordinating growth and flowering.

The researchers wondered if they could exploit this to attack the parasite. It is possible to switch off a gene with a short piece of RNA with which it pairs. This technique is called RNA interference or RNA silencing, and it won the Nobel Prize in medicine in 2006.

To use RNA interference against dodder, the team looked for genes that could affect the parasite but not the host.

"The answer turned out to be genes I've worked on all my career," Sinha said, describing a group of genes that control the activity of other genes involved in shoot and root growth.

These genes are active in both the host plant meristem (an area of active growth in roots and shoots) and in the haustoria, the junctions where the parasite penetrates the host, Sinha said. So the researchers identified regions that were unique to the parasite, and used them to make a short DNA construct. Tobacco plants carrying this construct make short pieces of RNA that match the genes of the parasite, but not the host.

Dodder did not grow as well on the engineered plants as on control plants, Sinha said. At the same time, the dodder showed high levels of stress signals and flowered early -- a reaction to stress.

The work was initiated by Steven Runo and spearheaded by Amos Alakonya, two African graduate students who have now returned to Kenyatta University in Kenya, Sinha said. They hope to develop the technique to control Striga in African maize crops.

"This is the proof of concept, and now we can take it into the field," she said.

Other authors on the paper are: at UC Davis, postdoctoral researchers Ravi Kumar, Seisuke Kimura, Helena M. Garces, Julie Kang, Rakefet David-Schwartz; graduate students Daniel Koenig, Brad Townsley, and undergraduate student Andrea Yanez; and Jesse Machuka at Kenyatta University.

The work was funded by the Rockefeller Foundation and the National Science Foundation.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $684 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Neelima Sinha, Plant Biology, (530) 754-8441, nrsinha@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>