Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hiring antibodies as nanotechnology builders

04.12.2019

What if we could use antibodies as functional tools for nanotechnology applications? A group of researchers at the University of Rome Tor Vergata started from this simple question and the results of their research are now published in Nature Communications.

Nanotechnology enables the design and fabrication of molecular structures of nanoscale dimensions that hold a great potential for several applications in the near future, including biomedicine.


Artistic representation of the strategy adopted in the work. Antibodies, by binding to antigen-conjugated DNA tiles, induce the assembly of tubular nanoscale structures.

Credit: Ella Marushchenko

A convenient way to make such nanostructures is to employ synthetic DNA as the building material. These days it is possible to design and synthetize DNA strands that, by simple and predictable interactions, bind to each other just like Lego bricks, and form beautiful 2D and 3D geometries in a very controllable and precise fashion.

To date, many nanoscale shapes have been created using DNA bricks, ranging from nanoboxes to more complex geometries, such as a nanoscale Monalisa.

To allow potential applications of these nanostructures, however, it would be extremely important to design them so that their assembly and disassembly could be guided by molecular cues of clinical relevance.

Now a research group at the University of Rome, Tor Vergata has shown that it is possible to recruit antibodies as molecular builders to build or dismantle DNA nanostructures.

The function of antibodies in our body is to recognize and bind to a specific target (i.e. the antigen), which is often a foreign molecule or protein. For this reason, antibodies are ideal biomarkers because they are produced by our body to target foreign molecules in our blood. Each antibody has its own target and therefore does its job in a highly specific and precise way.

"This project started a couple of years ago when we realized that this amazing functionality of antibodies (recognize and bind to a specific molecule) could be repurposed for nanotech applications", says Francesco Ricci, professor at the University of Rome Tor Vergata and senior author of the manuscript. "We had the idea of utilizing antibodies as molecular workers to build nanoscale structures".

"To do this, we employed DNA bricks that bind to each other and form nanostructures of tubular shape", says Simona Ranallo, a post-doc researcher in the group of Prof. Ricci and first author of the manuscript, "we then re-engineered such bricks with recognition tags (antigens) so that their assembly is initiated by a specific antibody. The nanotube structure can thus only built up when the antibody is present in the sample!"

"Antibodies are highly specialized workers" adds Ricci, "there are thousands of distinct antibodies in our body each recognizing its own antigen. We took advantage of this amazing feature and designed different bricks that can assemble with different specific antibodies".

"We took a step further" continues Ricci, "we engineered our DNA bricks so that not only they assemble into the desired nanostructure in the presence of a specific antibody, but they can also be completely dismantled by a second antibody worker".

This strategy demonstrates the possibility to design intelligent nanostructures that can be built and destroyed in the presence of a specific biomarker. This could have potential applications in the biomedical field, either in diagnostics or therapeutics.

Francesco Ricci | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-13104-6

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>