Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hippocampus plays bigger memory role than previously thought

02.11.2011
Human memory has historically defied precise scientific description, its biological functions broadly but imperfectly defined in psychological terms.

In a pair of papers published in the November 2 issue of The Journal of Neuroscience, researchers at the University of California, San Diego report a new methodology that more deeply parses how and where certain types of memories are processed in the brain, and challenges earlier assumptions about the role of the hippocampus.

Specifically, Larry R. Squire, PhD, a Research Career scientist at the VA Medical Center, San Diego and professor of psychiatry, neurosciences, and psychology at UC San Diego, and Christine N. Smith, PhD, a project scientist, say that contrary to current thinking the hippocampus (a small seahorse-shaped structure located deep in the center of the brain and long associated with memory function) supports both recollection and familiarity memories when these memories are strong.

Recollection and familiarity memory are two components of recognition memory – the ability to identify an item as having been previously encountered. Recollection memory involves remembering specific details about a learning episode, such as where and when the episode occurred. Familiarity memory refers to remembering an item as previously encountered, but without any recall of specific details, such as recognizing someone's face but recalling nothing else about that person (For example, where you met the person.).

Prevailing research posits that recollection and familiarity memories involve different regions in the brain's medial temporal lobe: the hippocampus for recollection, the adjacent perirhinal cortex for familiarity.

"But given the connectivity in that part of the human brain, that separation seemed too clean, too neat," said Squire, a leading expert on the neurological bases of memory. "The idea of distinct functions was unlikely."

Recollection-based memories are typically associated with higher confidence and accuracy than familiarity-based decisions. Accordingly, in the past, comparisons between recollection and familiarity have also involved a comparison between strong memories and weak memories. So the question is how the brain accomplishes recollection and familiarity when the effect of memory strength is taken off the table.

Squire, Smith and John T. Wixted, PhD, professor of psychology and chair of the UC San Diego Department of Psychology, developed a novel method for assessing not just how recollection and familiarity memories are formed, but also their strength. The scientists combined functional magnetic resonance imaging of the brain with a test in which study participants looked at a series of words and judged on a 20-point confidence scale if each word had been studied earlier or not. If the word was deemed old (the upper half of the scale), participants were asked to decide if it was "remembered," which denotes recollection, "known," which denotes familiarity, or simply "guessed."

Not surprisingly, recollected items had a higher accuracy and confidence rating among participants than did familiar items. Previous studies have produced similar results. But when the UC San Diego scientists compared recollected and familiar items that were both strongly remembered, the data showed that the hippocampus was actively involved in both, contrary to earlier research.

The discovery peels away another layer of complexity in human memory, said Squire. "If we really want to know how the brain works, the best guide is to think of it in terms of neuroanatomy. Psychological descriptions got us started, but a fundamental map and understanding will require a deeper biological foundation."

In practical terms, Squire said, the findings may help in diagnosing and treating patients with memory problems. "If you have better constructs, you have a better way of knowing what's going on in a patient's brain. You can be more precise in your thinking about what's happening and what to do."

First-author Smith said their research may prompt other scientists to re-think some of their studies. "This was the first study to re-do earlier research with these controls. We hope it will encourage others to reassess the potential effect of strength of memory in studies of this kind."

In the second paper, Squire, with co-authors Zhuang Song, PhD, a postdoctoral researcher, and Annette Jeneson, a graduate student, used a novel combination of neuroimaging with other tests to also show that the hippocampus is related to encoding of familiarity-based item memories, not just recollection-based memories.

Funding for this research came, in part, from the Medical Research Service of the Department of Veterans Affairs, the National Institute of Mental Health and the Metropolitan Life Foundation.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>