Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly contagious honey bee virus transmitted by mites

08.06.2012
Researchers in Hawaii and the UK report that the parasitic 'Varroa' mite has caused the Deformed Wing Virus (DWV) to proliferate in honey bee colonies.
This association is now thought to contribute to the world-wide spread and probable death of millions of honey bee colonies. The current monetary value of honey bees as commercial pollinators in the United States alone is estimated at about $15-$20 billion annually

The research conducted in Hawaii by researchers at Sheffield University, the Marine Biological Association, FERA and University of Hawaii, and reported in the journal Science (8 June 2012), showed how Varroa caused DWV – a known viral pathogen – to increase its frequency among honey bee colonies from 10% to 100%.

This change was accompanied by a million-fold increase in the number of virus particles infecting each honey bee and a massive reduction in viral strain diversity leading to the emergence of a single 'virulent' DWV strain.

As the mite and new virulent strain of virus becomes established across the Hawaiian islands the new emerging viral landscape will mirror that found across the rest of the world where Varroa is now established.

This ability of a mite to permanently alter the honey bee viral landscape may by a key factor in the recent colony collapse disorder (CCD) and over-wintering colony losses (OCL) as the virulent pathogen strain remains even after the mites are removed.

Notes for editors

Honey bee populations can experience spectacular crashes. The most recent being the well publicized colony collapse disorder (CCD), but its cause remains a mystery.

Varroa is a large mite (~1.5mm x1mm) that lives on the surface of honeybees, feeding off their blood and reproducing on their developing brood.

The arrival and spread of Varroa across the Hawaiian Islands offered a unique opportunity during 2009 and 2010 to track the evolutionary change in the honey bee virus landscape.

The mite facilitates the spread of viruses by acting as a viral reservoir and incubator, although four bee viruses often associated with CCD (Kashmir bee, Slow paralysis, Acute bee paralysis and Israeli acute paralysis virus) were not influenced by Varroa in Hawaii.

One bee virus, the Deformed Wing Virus (DWV), has been implicated in colony losses, for example over wintering colony losses (OCL), as it appears to become ubiquitous wherever Varroa occurs.

DWV is naturally transmitted between bees via feeding or during mating. However, the mites introduce DWV directly into the bee's blood while feeding so creating a new viral transmission route that bypasses many of the bees' natural defensive barriers.

DWV is a tiny virus similar in structure to polio or foot and mouth virus and has only 9 genes.

DWV infected bees may display the classic wing deformity, but the vast majority of infected bees do not show any morphological signs of infection.

The dominant strain found on Oahu and now Big Island is identical to that found in other areas of the world indicating that the situation on Hawaii is a mirror to what has happened right across the globe.

Based on comparisons between the 2009 and 2010 the changes in viral diversity associated with Varroa appear stable and persist even after the parasite levels are reduced via mite treatments.

Dr Stephen J Martin | EurekAlert!
Further information:
http://www.sheffield.ac.uk

Further reports about: CCD DWV Hawaiian OCL Virus WING bee colonies honey bee honey bee colonies

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>