Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Tumor Rates by Exposure to Electromagnetic Fields

06.03.2015

Electromagnetic fields stimulate the growth of tumors in mice. This is the result of a new study by researchers from Jacobs University in Bremen, Germany, which was commissioned by the Federal Office for Radiation Protection, and published today. The findings do not only confirm a previous pilot study undertaken by the Fraunhofer Institute ITEM in 2010, but expand on the knowledge in two important aspects.

In a study with mice, Alexander Lerchl, Professor of Biology at Jacobs University, and his team could verify that carcinogen-induced tumor rates were significantly higher when the animals were exposed to electromagnetic fields such as those emitted from mobile phones.


Prof. Dr. Alexander Lerchl, Professor of Biology at Jacobs University

Copyright: Jacobs University

“The effects on liver and lung tumors, as reported by ITEM in 2010, were fully confirmed,” says Prof. Lerchl who conducted the investigation together with colleagues from Jacobs University and from the University of Wuppertal. “In addition we found a significantly elevated rate of lymphoma due to exposure,” the scientist explains. Furthermore, some of the effects were seen at levels below the exposure limits for the general population.

Alexander Lerchl, however, does not interpret the new data as being a proof for cancer induction through the use of mobile phones.

“Our results show that electromagnetic fields obviously enhance the growth of tumors. The assumption that they can cause cancer has not been proven so far,” Prof. Lerchl emphasizes, who has published a large number of studies on the topic. Additional research is necessary to clarify the reasons for the latest results findings.

“We can clearly demonstrate the effects. Now new studies must aim at explaining the underlying mechanisms”, Prof. Lerchl concludes.

For questions, please contact:
Prof. Dr. Alexander Lerchl | Professor of Biology
Tel.: +49 421 200 3241 | a.lerchl@jacobs-university.de

Weitere Informationen:

http://www.sciencedirect.com/science/article/pii/S0006291X15003988 - new study by Prof. Dr. Alexander Lerchl from Jacobs University Bremen, Germany

Kristina Logemann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>