Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-resolution imaging of nanoparticle surface structures is now possible

06.08.2018

Using scanning tunnelling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. This was the finding of joint research between China and Finland, led in Finland by Academy Professor Hannu Häkkinen of the University of Jyväskylä. The research was recently published in the prestigious Nature Communications series and the publication was selected by the journal editors to the journal's monthly collection of highlighted papers.

Studying the surface structures of nanoparticles at atomic resolution is vital to understanding the chemical properties of their structures, molecular interactions and the functioning of particles in their environments. Experimental research on surface structures has long involved imaging techniques suitable for nanometer-level resolution, the most common of which are based on electron tunnelling, the abovementioned scanning tunnelling microscopy (STM), and atomic force microscopy (AFM) based on the measurement of small, atomic-scale forces.


Left: High-resolution STM image of a silver nanoparticle of 374 silver atoms covered by 113 TBBT molecules. Right: a simulated STM image from one orientation of the particle. Center: the atomic structure of the particle.

Credit: Hannu Häkkinen

However, achieving molecular resolution in imaging has proven highly challenging, for example because the curvature of the object to be imaged i.e. the nanoparticle's surface, is of the same order as the curvature of the scanning tip. Measurements are also sensitive to environmental disturbances, which may affect the thermal movement of molecules, for example.

The researchers used previously characterised silver nanoparticles, with a known atomic structure. The metal core of the particles has 374 silver atoms and the surface is protected by a set of 113 TBTT molecules. TBBT (tert-butyl-benzene thiol) is a molecule with three separate carbon groups on its end. The particle's outer surface has a total of 339 such groups.

When this type of nano-particle sample was imaged at low temperatures in the STM experiment, clear sequential modulations were observed in the tunnelling current formed by the image (see left part of the image). Similar modulations were noted when individual TBBT molecules were imaged on a flat surface.

Based on density functional theory (DFT), the simulations performed by Häkkinen's research team showed that each of the three carbon groups of the TBBT molecule provides its own current maximum in the STM image (see the right part of the image) and that the distances between the maxima corresponded to the STM measurement results.

This confirmed that measurement was successful at sub-molecular level. The simulations also predicted that accurate STM measurement can no longer be successful at room temperature, as the thermal movement of the molecules is so high that the current maxima of individual carbon groups blend into the background.

"This is the first time that STM imaging of nanoparticle surface structures has been able to 'see' the individual parts of molecules. Our computational work was important to verifying the experimental results. However, we wanted to go one step further. As the atomic structure of particles is well known, we had grounds for asking whether the precise orientation of the imaged particle could be identified using simulations," says Häkkinen, describing the research.

To this end, Häkkinen's group computed a simulated STM image of the silver particle from 1,665 different orientations and developed a pattern recognition algorithm to determine which simulated images best matched the experimental data.

"We believe that our work demonstrates a new useful strategy for the imaging of nanostructures. In the future, pattern recognition algorithms and artificial intelligence based on machine learning will become indispensable to the interpretation of images of nanostructures. Our work represents the first step in that direction. That's why we have also decided to openly distribute the pattern recognition software we had developed to other researchers," says Häkkinen.

The nanoparticle synthesis was performed in Xiamen University by Professor Nanfeng Zheng's research group and the STM measurements were carried out at Dalian Institute of Chemical Physics under the direction of Professor Zhibo Man. PhD student Sami Kaappa and senior researcher Sami Malola from Professor Häkkinen's group performed the calculations for the project. The research of Professor Häkkinen's group is in receipt of funding from the AIPSE programme of the Academy of Finland. The CSC - IT Center for Science in Finland and the Barcelona Supercomputing Center provided the resources for all simulations requiring high-power computing. The Barcelona simulations were part of the NANOMETALS project supported by the PRACE organisation.

###

More information:

- Published article: Qin Zhou, Sami Kaappa, Sami Malola, Hui Lu, Dawei Guan, Yajuan Li, Haochen Wang, Zhaoxiong Xie, Zhibo Ma, Hannu Häkkinen, Nanfeng Zheng Xueming Yang & Lansun Zheng, "Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution", Nature Communications 9, 2948 (2018), DOI 10.1038/s41467-018-05372-5, https://rdcu.be/3ACE

- Academy Professor Hannu Häkkinen, University of Jyvaskyla, Hannu.j.hakkinen@jyu.fi,
tel. +358 29 247 973

Academy of Finland, Communications
Leena Vähäkylä, Communications Specialist
tel. +358 29 5335 139
leena.vahakyla@aka.fi

The Academy of Finland's mission is to fund high-quality scientific research, provide expertise in science and science policy, and strengthen the position of science and research. In 2018, our funding for research amounts to 444 million euros. Part of our funds come from proceeds of Finland's national gaming company Veikkaus. In 2018, these proceeds account for 70.7 million euros of our total funding for scientific research.

Media Contact

Leena Vahakyla
leena.vahakyla@aka.fi
358-295-335-139

 @SuomenAkatemia

http://www.aka.fi/eng 

Leena Vahakyla | EurekAlert!
Further information:
https://rdcu.be/3ACE
http://dx.doi.org/10.1038/s41467-018-05372-5

More articles from Life Sciences:

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Scientists discovered 20 new gnat species in Brazil

24.09.2018 | Life Sciences

Scientists solve the golden puzzle of calaverite

24.09.2018 | Physics and Astronomy

Three NASA missions return first-light data

24.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>