Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Performance Microscopy for Membrane Receptors

03.06.2015

In a new Collaborative Research Centre scientists from Würzburg and Jena are examining the function of membrane receptors with the most modern light microscopy. The objective is to gain new findings about how these receptors work and to develop the high-performance light microscopy further.

Membrane receptors are participating as important switching molecules in almost all biological processes. These commonly complex proteins are located in the outer cell boundaries, the cell membranes, just like very sensitive antenna and are waiting for signals in the form of small molecules, so called ligands which can attach themselves specifically and custom-fit to the respective receptors.


Just like a satellite which provides incredibly sharp images of the earth’s surface: The microscopic dSTORM technology works similarly to this.

(Picture: AK Jürgen Seibel / AK Markus Sauer)

The receptor then changes its chemical form and therefore its properties and thus gives the starting signal for other signal or material transports in the cell. Membrane receptors are, for example, the docking stations for adrenaline and growth hormones, for nicotine and opiates.

The new Collaborative Research Centre

These receptors are the focus of a “ReceptorLight” Collaborative Research Centre, newly set up by the German Research Foundation, where scientists from Jena and Würzburg are participating. Spokesperson is Professor Markus Sauer, physiologist from the Jena University Clinic; representative spokesperson is Professor Markus Sauer, head of the department for Biotechnology and Biophysics at University of Würzburg. The scientists want to continue to decode the switching plans of different membrane receptors in 22 sub-projects and with an entire arsenal of microscopic technologies. Depending on the question, they will also work on the further development of methods and the evaluation of the images gained.

Technology made in Würzburg

One of the methods used, is the one developed by Professor Markus Sauer, the dSTORM technology that allows an extremely precise statement regarding the location and number of molecules through light-induced control of the fluorescence properties of pigments and the stochastic evaluation of many individual molecular images.

“In order to display the spatial distribution of more than ten different target molecules in an experiment, we need a multi-level marking, detection and bleaching process that we want to extend to different colouring agents.” This is how the physical chemist from the biocenter of the University of Würzburg describes the program of the project that he is developing together with professor Rainer Heintzmann from the Leibniz Institute of Photonic Technologies and from the Institute of Physical Chemistry in Jena.

Light as a physical tool

Over the last years, new light-microscopic methods have contributed to a better understanding of the way membrane receptors work. “One main advantage of light as a physical tool lies in the comparatively small interruption of biological processes and structures”, emphasizes Professor Klaus Benndorf. “This enabled substantial new findings on the speed of attachment but also on the localisation of the receptors, partly with a spatial resolution in the range of 20 nanometres, i.e. far below the optical resolution limit, Benndorf added.

Molecular mechanisms of encephalitis

In a project that is also at home at the two sites of the SFB, the neurologist from Jena, Professor Christian Geis and the biophysicist PD Dr. Sören Doose examine the molecular mechanisms of an encephalitis, where patients form autoantibodies against a glutamate receptor in the cell membrane of neurons. From electrophysiological measurements, two-photon fluorescence microscopy and high-resolution imaging of these receptors, such as dSTORM, the scientists are expecting insights on the basic principles of neurological autoimmune diseases with resolutions that have so far not been achieved in space or time.

Würzburg plant scientists also take part

And plant cell receptors are also in the focus of scientists: Würzburg plant scientists professor Rainer Hedrich and Professor Dietmar Geiger are researching the switching behaviour of receptors of the dry stress hormone which regulates the stomata, by means of high-resolution fluorescence microscopy and fluorescence resonance energy transfer.

The receptor light study groups in Würzburg and Jena are combining their diverse methodical skills in the area of high-performance light microscopy with insights of physiology and biophysics of very different membrane receptors. In the process, they will not only jointly use highly modern light-microscopic methods but also special algorithms in order to analyse image data and an independent research and image data management which are each established in autonomous sub-projects. “We want to better understand the way membrane receptors work and at the same time we want drive the option of light-microscopic imaging forward - in spatial as well as in temporal resolution, and also in the complexity of the biological systems viewed, says Klaus Benndorf.

Contact

Prof. Dr. Klaus Benndorf, Institute for Physiology II, Jena University Clinic
T: +49 (0)3641 934350, Klaus.Benndorf@med.uni-jena.de

Prof. Dr. Markus Sauer, Biocenter, University of Würzburg
T: +49 (0)931 31-88687, m.sauer@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>