Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of uric acid may be associated with high blood pressure

28.08.2008
Reducing levels of uric acid in blood lowered blood pressure to normal in most teens in a study designed to investigate a possible link between blood pressure and the chemical, a waste product of the body's normal metabolism, said researchers at Baylor College of Medicine in a report that appears in the current issue of the Journal of the American Medical Association.

"If you reduce uric acid, at least in some patients, you may be able to reduce blood pressure," said Dr. Daniel Feig, associate professor of pediatrics-renal at BCM and chief of the pediatric hypertension clinics at Texas Children's Hospital. "This could be one way people develop hypertension and may allow us to develop new therapies."

Understanding how people develop high blood pressure gives scientists new tools for understanding the disorder and developing drugs to prevent and treat it.

Uric acid builds up when the body makes too much of it or fails to excrete it. It is a waste product resulting from the metabolism of food. Too much uric acid can cause gout, which occurs when uric acid crystals accumulate in the joints. In this study, researchers used allopurinol to reduce high uric acid levels. Allopurinol is usually used to treat gout, but Feig said its potential side effects rule it out as a treatment for high blood pressure.

In the JAMA study, Feig and his colleagues treated teens with newly diagnosed high blood pressure and elevated levels of uric acid in their blood with allopurinol. In the study, half of the 30 teen-agers with newly diagnosed high blood pressure and higher than normal levels of uric acid in their blood underwent treatment with allopurinol twice a day for four weeks. The other half received a placebo (an inactive drug) on the same schedule. They then went without either drug for two weeks before receiving the opposite treatment for another four weeks.

The treatment not only reduced uric acid levels, it also reduced blood pressure in most of the teens, said Feig. In fact, he said, blood pressures decreased to normal in 20 of the 30 teens when they were on allopurinol. By contrast, only 1 of the 30 teens had normal blood pressure when receiving placebo.

"This is far from being a reasonable therapeutic intervention for high blood pressure, but these findings indicate a first step in understanding the pathway of the disease," said Feig. "You cannot prevent a disease until you know the cause. This study is way of finding that out."

Studies in rats had indicated previously that high levels of uric acid could be associated with the development of high blood pressure through a proven pathway, said Feig. However, he and his colleagues needed to determine if this was true for humans as well.

"The antihypertensive therapies available to patients are well proven and safe," said Feig. "Currently available antihyperuricemic therapies (treatments that lower uric acid) are not safe enough to be used as first line therapy for most people with high blood pressure."

Side effects could include nausea, diarrhea, vomiting, liver problems and even a very rare, potentially life-threatening reaction known as Steven-Johnson syndrome. While only 1 in 3,000 people develop this problem, the risk is too great to prescribe the drug on a routine basis to people with high blood pressure, a problem that affects 30 to 35 percent of adults.

Currently available therapies are effective but are not solving the problem in everyone. Optimal blood pressures are achieved in only 40 percent of people who are treated for the problem. Understanding the cause of high blood pressure could lead to better treatments and even methods of prevention.

Animal studies indicate that early in the disease, the extra uric acid activates the renin angiotensin system of the body, shrinking key blood vessels and causing high blood pressure. Eventually, however, the small vessels in the kidney are permanently affected, making the blood pressure sensitive to salt or sodium. Too much salt causes the pressure to rise.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.jama.com
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>