Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of uric acid may be associated with high blood pressure

28.08.2008
Reducing levels of uric acid in blood lowered blood pressure to normal in most teens in a study designed to investigate a possible link between blood pressure and the chemical, a waste product of the body's normal metabolism, said researchers at Baylor College of Medicine in a report that appears in the current issue of the Journal of the American Medical Association.

"If you reduce uric acid, at least in some patients, you may be able to reduce blood pressure," said Dr. Daniel Feig, associate professor of pediatrics-renal at BCM and chief of the pediatric hypertension clinics at Texas Children's Hospital. "This could be one way people develop hypertension and may allow us to develop new therapies."

Understanding how people develop high blood pressure gives scientists new tools for understanding the disorder and developing drugs to prevent and treat it.

Uric acid builds up when the body makes too much of it or fails to excrete it. It is a waste product resulting from the metabolism of food. Too much uric acid can cause gout, which occurs when uric acid crystals accumulate in the joints. In this study, researchers used allopurinol to reduce high uric acid levels. Allopurinol is usually used to treat gout, but Feig said its potential side effects rule it out as a treatment for high blood pressure.

In the JAMA study, Feig and his colleagues treated teens with newly diagnosed high blood pressure and elevated levels of uric acid in their blood with allopurinol. In the study, half of the 30 teen-agers with newly diagnosed high blood pressure and higher than normal levels of uric acid in their blood underwent treatment with allopurinol twice a day for four weeks. The other half received a placebo (an inactive drug) on the same schedule. They then went without either drug for two weeks before receiving the opposite treatment for another four weeks.

The treatment not only reduced uric acid levels, it also reduced blood pressure in most of the teens, said Feig. In fact, he said, blood pressures decreased to normal in 20 of the 30 teens when they were on allopurinol. By contrast, only 1 of the 30 teens had normal blood pressure when receiving placebo.

"This is far from being a reasonable therapeutic intervention for high blood pressure, but these findings indicate a first step in understanding the pathway of the disease," said Feig. "You cannot prevent a disease until you know the cause. This study is way of finding that out."

Studies in rats had indicated previously that high levels of uric acid could be associated with the development of high blood pressure through a proven pathway, said Feig. However, he and his colleagues needed to determine if this was true for humans as well.

"The antihypertensive therapies available to patients are well proven and safe," said Feig. "Currently available antihyperuricemic therapies (treatments that lower uric acid) are not safe enough to be used as first line therapy for most people with high blood pressure."

Side effects could include nausea, diarrhea, vomiting, liver problems and even a very rare, potentially life-threatening reaction known as Steven-Johnson syndrome. While only 1 in 3,000 people develop this problem, the risk is too great to prescribe the drug on a routine basis to people with high blood pressure, a problem that affects 30 to 35 percent of adults.

Currently available therapies are effective but are not solving the problem in everyone. Optimal blood pressures are achieved in only 40 percent of people who are treated for the problem. Understanding the cause of high blood pressure could lead to better treatments and even methods of prevention.

Animal studies indicate that early in the disease, the extra uric acid activates the renin angiotensin system of the body, shrinking key blood vessels and causing high blood pressure. Eventually, however, the small vessels in the kidney are permanently affected, making the blood pressure sensitive to salt or sodium. Too much salt causes the pressure to rise.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.jama.com
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>