Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden lives of proteins

03.12.2009
For the first time, experimental evidence shows that hidden protein structures are essential for catalysis

An important Brandeis study appearing in the December 3 issue of Nature raises the curtain on the hidden lives of proteins at the atomic level. The study reports that for the first time, researchers used x-ray crystallography and nuclear magnetic resonance (NMR) techniques to directly visualize protein structures essential for catalysis at the rare high-energy state. The study also showed how the motions of these rare, or hidden, structures collectively, directly contribute to enzyme catalysis.

In doing so, the study also suggests new molecular sites for potential drug targets, the cornerstone of rational drug design. Drugs may bind, or dock, to the infrequent high-energy states of target enzymes that have been hidden to traditional structural methods. The thinking is that drugs can be designed by docking algorithms to a collection of protein structures, not just one, providing better bio-molecular targeting.

This study comes in the wake of earlier Brandeis studies aimed at advancing understanding of protein function using pioneering techniques such as NMR. For a long time, scientists viewed proteins more or less as macromolecular wallflowers, venturing out onto the atomic-level dance floor to perform only during catalysis, their active state.

Then, several years ago, Brandeis biophysicist Dorothee Kern reported in Nature that her lab's experiments using NMR also linked protein function to their much rarer high-energy state, in the absence of catalysis. That study helped put to rest the conventional wisdom that proteins actually rest at all.

This Nature study takes Kern's research to the next level, seeing the high-resolution structure of the hidden, high-energy state for the first time. For this success, high –resolution x-ray crystallography was further pushed by analyzing electron density data previously discarded as "noise" and by collecting data at ambient temperature. The protein of interest is human cyclophilin A, an enzyme that is highjacked by the HIV virus to aid its own replication.

But it was thanks to some clever protein design together with dynamic NMR spectroscopy that provided direct experimental evidence that the hidden structures in the high-energy state are in fact essential for catalysis. The researchers revealed what happens when proteins flip from the rare state to a major state in a process called interconversion. If this flip is fast, then the enzyme does its job fast, but if the flip is slow, as in the designer enzyme, then the enzyme operates slowly.

"People always focused on the chemistry—accelerating the reaction through catalyzing the chemical step of the substrates. What we've shown is that protein dynamics is as important as the chemical step," said Kern, a Howard Hughes Medical Institute Investigator. "Basically, all the steps need to be choreographed just right, like steps for a beautiful dancer. An enzyme can only function well with the perfect choreography of all the components."

Said Kern: "We now can show directly that the higher energy states are always there and that these hidden, rare states are absolutely essential for protein function."

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>