Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden dynamics detected in neuronal networks

23.07.2019

Scientists from Forschungszentrum Jülich and RWTH Aachen University show that neuronal networks can assume a second, previously unknown critical mode

Neuronal networks in the brain can process information particularly well when they are close to a critical point - or so brain researchers had assumed based on theoretical considerations. However, experimental investigations of brain activity revealed much fewer indicators of such critical states than expected.


The heterogeneous, critical dynamics show no avalanche-like increase, instead manifesting in specific projections of nerve cell activity in which neurons are weighted differently -- which corresponds to a different degree of excitatory or inhibitory influence of individual neurons.

Copyright: Forschungszentrum Jülich / David Dahmen

Scientists from Forschungszentrum Jülich and RWTH Aachen University have now proposed a possible explanation. They showed that neuronal networks can assume a second, previously unknown critical mode whose hidden dynamics are almost impossible to measure with conventional methods.

Critical points, at which complex systems abruptly change their characteristics, are familiar concepts in physics. Ferromagnetic materials are one example.

Below the critical temperature, also known as the Curie temperature, the electron spins of the material align so that they all point in the same direction. The tiny magnetic moments of the individual spins thus add together, which can be measured from the outside as a spontaneous magnetization of the material.

Very similar dynamics were previously detected in measurements of brain activity. Brain signals are a typical case, where large areas of the network become active simultaneously in an avalanche-like fashion within a very short time.

Overall, however, the phenomenon occurs much more rarely than expected. Scientists from Forschungszentrum Jülich and RWTH Aachen University have now presented a solution for this apparent contradiction in the journal PNAS. They showed that neuronal networks can exhibit a second, previously unknown type of criticality.

An analysis of the simultaneous activity of 155 nerve cells showed that for this second type of criticality, a large number of nerve cells also exhibit coordinated behaviour.

However, the interaction comprises not only the simultaneous activation but also the targeted inhibition of large groups of neurons. This newly discovered criticality permits the network to represent signals in numerous combinations of activated neurons and therefore - according to the researchers - to efficiently process information in parallel.

This also explains why no sudden increase in network activity can be detected from the outside. Standard methods such as EEG or LFP essentially add the signals of many neurons together. In this second critical state, however, the number of active nerve cells remains mostly constant.

The heterogeneous dynamics can therefore not be recorded with these methods. Only by using highly developed mathematical methods borrowed from statistical physics could the researchers, headed by Prof. Moritz Helias, make experimentally verifiable predictions of the correlations between the nerve cells.

For the direct experimental detection of the network state they had predicted by means of theory and simulation, the researchers, working with lead author Dr. David Dahmen, drew on Prof. Sonja Grün's expertise in analysing the joint activity of many nerve cells.

"This study has a far-reaching impact in that Prof. Helias and his team succeeded in applying field theory, which is a very successful method in physics, to neuroscience. We can thus hope for further insights in future," explains institute head Prof. Markus Diesmann (INM-6). Diesmann plays a major role in the EU's Human Brain Project (HBP), one of the largest neuroscientific projects worldwide, which unites the work of 500 researchers in 19 EU member states.

"In the HBP, we are concerned with the technology required to simulate large parts of the brain with all their nerve cells. These simulations on their own do not yet yield insights, however. They simply result in simulated data which are just as complicated as the data from nature.

However, they allow us to modify networks in a much more targeted manner than would be possible using experimental methods. But only by simplifying them, in a controlled way, into manageable mathematical models with fewer equations will we have the potential to understand the underlying mechanisms," explains Diesmann.

Media Contact

Tobias Schlößer
t.schloesser@fz-juelich.de
49-246-161-4771

 @fz_juelich

http://www.fz-juelich.de 

Tobias Schlößer | EurekAlert!
Further information:
https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2019/notifications/2019-07-12-hidden-dynamics.html
http://dx.doi.org/10.1073/pnas.1818972116

Further reports about: Forschungszentrum Jülich data nerve cells neurons process information

More articles from Life Sciences:

nachricht Study reveals profound patterns in globally important algae
21.08.2019 | Bigelow Laboratory for Ocean Sciences

nachricht Intestinal bacteria in type 2 diabetes: being overweight is pivotal
21.08.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

An Ice Age savannah corridor let large mammals spread across Southeast Asia

22.08.2019 | Earth Sciences

Protein-transport discovery may help define new strategies for treating eye disease

22.08.2019 | Health and Medicine

Boreal forest fires could release deep soil carbon

22.08.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>