Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hermit crabs socialize to evict their neighbors

29.10.2012
Terrestrial crabs, constrained by lack of suitable shells, must take others' remodeled homes
Social animals usually congregate for protection or mating or to capture bigger prey, but a University of California, Berkeley, biologist has found that the terrestrial hermit crab has a more self-serving social agenda: to kick another crab out of its shell and move into a larger home.

All hermit crabs appropriate abandoned snail shells for their homes, but the dozen or so species of land-based hermit crabs – popular terrarium pets – are the only ones that hollow out and remodel their shells, sometimes doubling the internal volume. This provides more room to grow, more room for eggs – sometimes 1,000 more – and a lighter home to lug around as they forage.

But empty snail shells are rare on land, so the best hope of moving to a new home is to kick others out of their remodeled shells, said Mark Laidre, a UC Berkeley Miller Post-Doctoral Fellow who reported this unusual behavior in this month's issue of the journal Current Biology.

When three or more terrestrial hermit crabs congregate, they quickly attract dozens of others eager to trade up. They typically form a conga line, smallest to largest, each holding onto the crab in front of it, and, once a hapless crab is wrenched from its shell, simultaneously move into larger shells.
"The one that gets yanked out of its shell is often left with the smallest shell, which it can't really protect itself with," said Laidre, who is in the Department of Integrative Biology. "Then it's liable to be eaten by anything. For hermit crabs, it's really their sociality that drives predation."

Laidre says the crabs' unusual behavior is a rare example of how evolving to take advantage of a specialized niche – in this case, land versus ocean – led to an unexpected byproduct: socialization in a typically solitary animal.

"No matter how exactly the hermit tenants modify their shellters, they exemplify an important, if obvious, evolutionary truth: living things have been altering and remodeling their surroundings throughout the history of life," wrote UC Davis evolutionary biologist Geerat J. Vermeij in a commentary in the same journal. For decades, Vermeij has studied how animals' behavior affects their own evolution – what biologists term "niche construction" – as opposed to the well-known Darwinian idea that the environment affects evolution through natural selection.
"Organisms are not just passive pawns subjected to the selective whims of enemies and allies, but active participants in creating and modifying their internal as well as their external conditions of life," Vermeij concluded.

Laidre conducted his studies on the Pacific shore of Costa Rica, where the hermit crab Coenobita compressus can be found by the millions along tropical beaches. He tethered individual crabs, the largest about three inches long, to a post and monitored the free-for-all that typically appeared within 10-15 minutes.

Most of the 800 or so species of hermit crab live in the ocean, where empty snail shells are common because of the prevalence of predators like shell-crushing crabs with wrench-like pincers, snail-eating puffer fish and stomatopods, which have the fastest and most destructive punch of any predator.

On land, however, the only shells available come from marine snails tossed ashore by waves. Their rarity and the fact that few land predators can break open these shells to get at the hermit crab may have led the crabs to remodel the shells to make them lighter and more spacious, Laidre said.

The importance of remodeled shells became evident after an experiment in which he pulled crabs from their homes and instead offered them newly vacated snail shells. None survived. Apparently, he said, only the smallest hermit crabs take advantage of new shells, since only the small hermit crabs can fit inside the unremodeled shells. Even if a crab can fit inside the shell, it still must expend time and energy to hollow it out, and this is something hermit crabs of all sizes would prefer to avoid if possible.

The work was funded by UC Berkeley's Miller Institute.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>