Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavily Wired: How Microorganisms organise their power supply via nano-wires

22.10.2015

Electrical energy from the socket - this convenient type of power supply is apparently used by some microorganisms that form nanowire connections to transfer energy. Researchers have now discovered such small power grids between dual-species microbial consortia that jointly degrade methane. Using genetic methods and electron microscopy the scientists demonstrated how the wire-like connections between the cells are relevant in energy exchange. Now the researchers report their findings in the journal Nature.

Since more than a decade, scientists from Bremen, Germany, study how methane in the seabed is degraded by microorganisms. So far, it has remained a mystery how the methane consumers tap into the energy contained in methane, and how they could share that energy. New results show that direct interspecies electron transfer between cells is likely the solution to this puzzle.


The archaea depicted in red yield eight electrons from the oxidation of a single methane molecule. The electrons travel via the nanowires to the sulphate reducing bacteria (green).

Max Planck Institute for Marine Microbiology, Bremen


The wires stretch out for several micrometres, longer than a single cell. The white bar represents the length of one micrometre. The arrows indicate the nanowires. (A=ANME-Archaea, H=HotSeep-1 partne

Max Planck Institute for Biophysical Chemistry, Göttingen

Electric power as microbial energy source

It was a spectacular finding when in 2010 researchers discovered electrical wiring between microorganisms using iron as energy source. Immediately the question came up, if electric power exchange is common in other microbially mediated reactions.

One of the processes in question was the anaerobic oxidation of methane (AOM) that is responsible for the degradation of the greenhouse gas methane in the seafloor, and therefore has a great relevance for Earth climate. The microorganisms involved have been described for the first time in 2000 by researchers from Bremen and since then have been extensively studied.

The greenhouse gas methane in the seabed

In the ocean, methane is produced from the decay of dead biomass in subsurface sediments. The methane rises upwards to the seafloor, but before reaching the water column it is degraded by special consortia of archaea and bacteria. The archaea take up methane and oxidise it to carbonate. They pass on energy to their partner bacteria, so that the reaction can proceed.

The bacteria respire sulphate instead of oxygen to gain energy (sulphate reducers). This may be an ancient metabolism, already relevant billions of years ago when the Earth’s atmosphere was oxygen-free. Yet, today it remains unknown, how the anaerobic oxidation of methane works biochemically.

Dr. Gunter Wegener, who authors the publication together with PhD student Viola Krukenberg, says: “We focused on thermophilic AOM consortia living at 60 degrees Celsius. For the first time we were able to isolate the partner bacteria to grow them alone. Then we systematically compared the physiology of the isolate with that of the AOM culture. We wanted to know which substances can serve as an energy carrier between the archaea and sulphate reducers.”

Most compounds were ruled out quickly. At first, hydrogen was considered as energy source. However, the archaea did not produce sufficient hydrogen to explain the growth of sulphate reducers – hence the researchers had to change their strategy.

Direct power wires and electron transporters

One possible alternative was to look for direct connections channelling electrons between the cells. Using electron microscopy on the thermophilic AOM cultures this idea was confirmed. Dietmar Riedel, head of electron microscopy facilities at the Max Planck Institute in Goettingen says: “It was really challenging to visualize the cable-like structures. We embedded aggregates under high pressure using different embedding media. Ultrathin sections of these aggregates were then examined in near-native state using transmission electron microscopy.”

Viola Krukenberg adds: "We found all genes necessary for biosynthesis of the cellular connections called pili. Only when methane is added as energy source these genes are activated and pili are formed between bacteria and archaea.”

With length of several micrometres the wires can exceed the length of the cells by far, but their diameter is only a few nanometres. These wires provide the contact between the closely spaced cells and explain the spatial structure of the consortium, as was shown by a team of researchers led by Victoria Orphan from Caltech in the same issue of Nature.

Professor Antje Boetius, leader of the research group, explains how the research on the wired consortia will proceed: "Consortia of archaea and bacteria are abundant in nature. Our next step is to see whether other types also show such nanowire-like connections. It is important to understand how methane-degrading microbial consortia work, as they provide important functions in nature."

Publication
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Gunter Wegener, Viola Krukenberg, Dietmar Riedel, Halina E. Tegetmeyer and Antje Boetius. Nature, 2015 doi:10.1038/nature15733
Involved research institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany.
MARUM, Center for Marine Environmental Sciences, University Bremen, Germany.
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.
Center for Biotechnology, Bielefeld University, Bielefeld, Germany.

For more information please contact
Dr. Gunter Wegener
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
D-28359 Bremen, Germany. Phone:+49 421 2028 867
gwegener@mpi-bremen.de

or the press officer
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
D-28359 Bremen, Germany. Phone:+49 421 2028 704
mschloes@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de web site of the Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>