Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the heart beats on the left

07.04.2009
In all vertebrates - and thus also in the human - the heart usually beats on the left side of the body. Why this is the case has not been understood in every detail yet. Developmental biologist from Würzburg now made a crucial step towards the solution of this riddle.

When a fertilized ovum is to grow into a viable organism during its embryonic development, one of the things the cells need to know is where left and right are, so that the organs eventually wind up in the right spot in the right shape.

Thus the heart of all vertebrates, for instance, develops from an initially tubular shape that already shows a flexion towards the right side of the body shortly after its formation. This initial asymmetry is the reason why the tip of the heart - after a number of further rotations - in the end points towards the left side of the body.

How the body distinguishes right from left

How does the organism manage distinguish right from left? And which processes are responsible, for example, for the fact that heart usually beats on the left? The Würzburg-based developmental biologist Professor Thomas Brand and his colleague Dr. Jan Schlüter pursued this question. The current online issue of Proceedings of the National Academy of Sciences PNAS reports their result. In chicken embryos, the two researchers were able to characterize a signal pathway that plays a role in the asymmetrical development of the heart.

"So far the leading opinion was that a certain signal pathway is responsible for the left-sided development of organs that needs to be inhibited on the right side so that an asymmetry can develop", says Thomas Brand. As the two developmental biologists have shown now, this concept is not accurate: "With the chicken embryo, we could prove that an autonomous signal pathway also exists on the right side", states Brand.

Asymmetry is the rule, not the exception

Asymmetry in the body: Is it not the exception from the rule that applies to no more than the heart, liver, and spleen, while the majority is virtually built as a mirror-image? "Not at all", says Brand. In principle, the entire body is built asymmetrically; to make it appear symmetrical nevertheless, numerous signal cascades have to become active during the embryonic development.

In their work, Brand and Schlüter intensively examined mechanisms that play a role in the right-left characteristics. One of them is the asymmetrical production of ionic pumps. "This leads to an uneven distribution of electrical charge on the right and left side of the body that seem to show the cells the way", explains Brand. In the developmental biologists' experiments, blocking these ionic pumps led to a random distribution of the cells in the heart that are the preliminary stage of coronary blood vessels: At times they were located, as is usual, on the right side; at times they ended up on the left. In other cases they settled on both sides; occasionally they were missing completely.

Dead cells show the way

"Thus this effect also plays an important role for the lateral orientation of the organs", says Thomas Brand. But to him, this is not sufficient as the sole explanation for the 'left-sided heart'. The same applies to another mechanism: the programmed cell death. "In this case, the organism ensures that cells die along the midline of the embryo to mark the border between the left and the right side of the body", explains Brand. If the scientists prevented this cell death, the cells would settle in the heart, also according to the random principle.

FGF8: This is the name of the signal factor that is responsible for the right-sided development of the chicken heart according to the findings of Brand and Schlüter. Thus, their conclusion is: "The models for the right-left development have to be expanded." The fact that other vertebrates, such as the South African clawed frog or the river lamprey, build hearts in a similar manner speaks for the concept that this aspect of the right-left asymmetry is evolutionarily ancient.

Further research necessary

If this is also relevant for mammals, and thus for humans, is not clear. After all: "FGF8 mutations cause heart deformities in mice. This signal pathway might be significant for the right-directed heart flexion in the very early stage of the development, says Thomas Brand. The focus of his further research will thus be to identify the target genes of this signal pathway to better understand this aspect of the heart development on a molecular level.

Jan Schlueter and Thomas Brand (2009). A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U. S. A. Early Edition (EE) the week of April 6, 2009. www.pnas.org/cgi/doi/10.1073/pnas.0811944106

Contact: Prof. Dr. Thomas Brand, phone (0931) 31-84259, e-mail: thomas.brand@uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>