Hearing restoration may be possible with cochlear repair after transplant of human cord blood cells

For their study, the team used animal models in which permanent hearing loss had been induced by intense noise, chemical toxicity or both. Cochlear regeneration was only observed in animal groups that received HSC transplants.

Researchers used sensitive tracing methods to determine if the transplanted cells were capable of migrating to the cochlea and evaluated whether the cells could contribute to regenerating neurons and sensory tissue in the cochlea.

“Our findings show dramatic repair of damage with surprisingly few human-derived cells having migrated to the cochlea,” said Roberto P. Revoltella, MD, PhD, lead author of the study. “A fraction of circulating HSC fused with resident cells, generating hybrids, yet the administration of HSC appeared to be correlated with tissue regeneration and repair as the cochlea in non-transplanted mice remained seriously damaged.”

Results also showed that cochlear regeneration was less in the transplanted group deafened by noise rather than chemicals, implying that damage was more severe when induced by noise. Regenerative effects were greater in mice injected with a higher number of HSC. They also found that regeneration of cochlear tissues improved as time passed.

According to Revoltella, their results suggest the possibility of an “emerging strategy for inner ear rehabilitation….providing conditions for the resumption of deafened cochlea.”

“This study provides hope for a potential treatment for the repair of hearing impairments, particularly those arising as a consequence of cochlear damage,” said David Eve, PhD, at the University of South Florida Health, and associate editor of Cell Transplantation.

Media Contact

Roberto P. Revoltella EurekAlert!

More Information:

http://www.itb.cnr.it

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors