Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why getting healthy can seem worse than getting sick

21.03.2012
A new article in The Quarterly Review of Biology helps explain why the immune system often makes us worse while trying to make us well.

The research offers a new perspective on a component of the immune system known as the acute-phase response, a series of systemic changes in blood protein levels, metabolic function, and physiology that sometimes occurs when bacteria, viruses, or other pathogens invade the body. This response puts healthy cells and tissue under serious stress, and is actually the cause of many of the symptoms we associate with being sick.

"The question is why would these harmful components evolve," asks Edmund LeGrand (University of Tennessee, Knoxville), who wrote the paper titled with Joe Alcock (University of New Mexico). The researchers contend that answer becomes clear when we view the acute-phase response in terms of what they call "immune brinksmanship."

The immune brinksmanship model "is the gamble that systemic stressors will harm the pathogens relatively more than the host," LeGrand said. The concept, he explains, is akin to what happens in international trade disputes. When one country places trade sanctions on another, both countries' economies take a hit, but the sanctioning country is betting that its opponent will be hurt more.

"One of our contributions here is to pull together the reasons why pathogens suffer more from systemic stress," LeGrand said.

The acute-phase response creates stress in several ways. It raises body temperature and causes loss of appetite and mild anemia. At the same time, certain vital nutrients like iron, zinc, and manganese are partially sequestered away from the bloodstream.

Some of these components are quite puzzling. Why reduce food intake just when one would expect more energy would be needed to mount a strong immune response? Zinc is essential for healthy immune function. Why pull it out of the bloodstream when the immune system is active? The benefits of a stressor like fever are fairly well known; heat has been shown to inhibit bacterial growth and cause infected cells to self-destruct. But what hasn't been clear is why pathogens should be more susceptible to this stress than the host.

LeGrand and Alcock offer some answers. For an infection to spread, pathogens need to multiply, whereas host cells can defer replication. Replication makes DNA and newly forming proteins much more susceptible to damage. It also requires energy and nutrients—which helps explain the benefits of restricting food and sequestering nutrients.

The act of invading a body also requires bacteria to alter their metabolism, which can make them more vulnerable to all kinds of stress, including heat.

Another reason pathogens are more vulnerable to stress is that the immune system is already pummeling them with white blood cells and related stressors at the site of the infection. That means that pathogens are already under local stress when systemic stressors are piled on. "In many ways, the acute-phase response reinforces the stress inflicted on pathogens locally at the infection site," LeGrand said.

As the term "brinksmanship" implies, there's an inherent risk in a strategy that involves harming oneself to hurt the enemy within. This self-harm leaves the body more vulnerable to other dangers, including other infections. Additionally, it is possible for the immune stressors to do more damage than required to control the pathogens.

"But in general, systemic stressors when properly regulated do preferential harm to invaders," LeGrand said. Viewed this way, it's not surprising that natural selection has utilized the stressful parts of the acute-phase response in mammals, reptiles, fish, and even invertebrates.

Edmund LeGrand and Joe Alcock, "Turning Up The Heat: Immune Brinksmanship In The Acute-phase Response." The Quarterly Review of Biology 87:1 (March 2012).

The premier review journal in biology since 1926, The Quarterly Review of Biology publishes articles in all areas of biology but with a traditional emphasis on evolution, ecology, and organismal biology. QRB papers do not merely summarize a topic, but offer important new ideas, concepts, and syntheses. They often shape the course of future research within a field. In addition, the book review section of the QRB is the most comprehensive in biology.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>