Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hazel, birch or grass? - Distinguish pollen using microfluidics and neuronal networks

09.08.2018

A miniaturized lab on a chip enables high resolution microscopy images of several thousands of pollen particles in seconds. Neuronal networks take over the image processing and classify the particles fast and reliable. Andreas Kleiber, PhD student at the Leibniz-Institute of Photonic Technology in Jena (Leibniz IPHT), tested the method on several highly allergenic pollen. For his results, presented during the 3rd Imaging Technology Summer Workshop dedicated to Big Data in Imaging, Kleiber was awarded the poster price by the European Society for Molecular Imaging.

Up to 1000 pollen per second flow by the optical window in a narrow channel on the stamp sized chip. A digital camera captures each of the tiny single grains through a microscope lens.


The patented design of the microfluidic channels allows to align all particles in the focal plane.

Source: A. Kleiber/Leibniz-IPHT


Birch pollen is one of eight different types of pollen, investigated by Andreas Kleiber.

Picture: designed by Bearfotos - Freepik.com

To receive sharp shots for the following data processing, every analyzed particle has to pass the liquid channel in the focal plane of the lens. The height of the focal plane of the used high-resolution lenses measures less than a hundredth millimetre.

Scientists of Leibniz IPHT met this technological challenge employing a sophisticated design of the components in the microfluidic chip. The patented method enables them to align the pollen grains exactly in the focal plane and therefore to obtain sharp images of all objects.

"Using two liquid streams from the sides, we press the particle stream to a sheet, just like a nozzle. A new arrangement of the micro channels rotates the sheet by 90° into the focal plane,“ explains Andreas Kleiber the technology. in the scope of his PhD thesis, the scientist researches methods for the high-throughput-analysis of bioparticles using microfluidic chips. 

The principle of hydrodynamic focusing is already known in the field of flow cytometry for the analysis of cell populations. Here, the cells are focused in a way that they pass by the measurement window along a line. "New to our system is, that we arrange the particles in a thin, two dimensional lamella, and therefore use the whole frame of the camera. This makes the method so rapid“, says Kleiber.

The researchers can actuate the horizontal position and thickness of the particle layer accurately. Therefore, they are able to control the rotation of the pollen in the stream. "Using methods already known from computer-tomography we are able to produce 3D-image data that contain important information e.g. about the three-dimensional morphology of a pollen grain.

The 3D-information improves the reliability of the pollen identification significantly“, elucidated Kleiber. The researcher evaluates images of the different pollen with software tools for particle tracking and feature extraction. A pre-trained convolutional neuronal network classifies the shots to a certain kind of pollen by means of the extracted data. The hit rate is above 98%.

The researchers classified the pollen, which originate from the research group Indoor Climatology at the University Hospital Jena, without any additional label, solely on basis of the image information from microscopy. "We are able to use the method furthermore for the analysis of cells e.g. to distinguish subtypes of white blood cells“, underlines Dr. Thomas Henkel, who leads the relevant research work at Leibniz IPHT.

"In the future, it should be possible to sort bioparticles with our chip“, says Henkel about the planned research, which is funded by the EU in the range of the Era-NET-DLR project "WaterChip“.

Wissenschaftliche Ansprechpartner:

Andreas Kleiber
Work Group Microfluidics//Leibniz IPHT Jena
Andreas.Kleiber(a)leibniz-ipht.de
+49 (0) 3641 206-357

Dr. Thomas Henkel
Work Group Leader
Thomas.Henkel(a)leibniz-ipht.de
+49 (0) 3641 206-307

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/hasel-birke-oder-gra...
http://www.e-smi.eu/index.php?id=topim-tech-20180
http://waterchip.eu

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>