Harmless soil-dwelling bacteria successfully kill cancer

The therapy uses Clostridium sporogenes – a bacterium that is widespread in the soil. Spores of the bacterium are injected into patients and only grow in solid tumours, where a specific bacterial enzyme is produced. An anti-cancer drug is injected separately into the patient in an inactive 'pro-drug' form. When the pro-drug reaches the site of the tumour, the bacterial enzyme activates the drug, allowing it to destroy only the cells in its vicinity – the tumour cells.

Researchers at the University of Nottingham and the University of Maastricht have now overcome the hurdles that have so far prevented this therapy from entering clinical trials. They have introduced a gene for a much-improved version of the enzyme into the C. sporogenes DNA. The improved enzyme can now be produced in far greater quantities in the tumour than previous versions, and is more efficient at converting the pro-drug into its active form.

A fundamental requirement for any new cancer therapy is the ability to target cancer cells while excluding healthy cells. Professor Nigel Minton, who is leading the research, explains how this therapy naturally fulfils this need. “Clostridia are an ancient group of bacteria that evolved on the planet before it had an oxygen-rich atmosphere and so they thrive in low oxygen conditions. When Clostridia spores are injected into a cancer patient, they will only grow in oxygen-depleted environments, i.e. the centre of solid tumours. This is a totally natural phenomenon, which requires no fundamental alterations and is exquisitely specific. We can exploit this specificity to kill tumour cells but leave healthy tissue unscathed,” he said.

The research may ultimately lead to a simple and safe procedure for curing a wide range of solid tumours. “This therapy will kill all types of tumour cell. The treatment is superior to a surgical procedure, especially for patients at high risk or with difficult tumour locations,” explained Professor Minton.

“We anticipate that the strain we have developed will be used in a clinical trial in 2013 led by Jan Theys and Philippe Lambin at the University of Maastricht in The Netherlands. A successful outcome could lead to its adoption as a frontline therapy for treating solid tumours. If the approach is successfully combined with more traditional approaches this could increase our chance of winning the battle against cancerous tumours.”

Media Contact

Laura Udakis EurekAlert!

More Information:

http://www.sgm.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors