Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haemophiliacs and their treatment – danger signals involved in immune response against factor-VIII

28.03.2018

In patients with haemophilia A, the missing blood coagulation factor VIII is administered, and thus replaced, intravenously. A part of the patients, however, develops antibodies (inhibitors) against factor VIII, which, in the worst case scenario, can cause uncontrolled bleeding. Researchers of the Paul-Ehrlich-Institut (PEI) have now established that the adverse immune reactions occur in the presence of so-called danger signals. After antigen processing, mainly memory T cells are activated. The results are published in Thromb. Haemost. in its online edition of 19 March 2018.

Haemophilia A is the most common congenital blood coagulation disorder. It is caused by various mutations in the so-called factor VIII (F8) gene. Depending on the type of mutation, the coagulation factor VIII is not formed in sufficient quantities or is missing entirely.


Photographic image taken under an electron microscope: Red blood cells, leukocytes and platelets

National Cancer Institute

The missing coagulation factor is replaced by intravenous administration of so-called factor-VIII concentrates. However, around a quarter of treated patients who have severe haemophilia develop antibodies against factor VIII – the body treats the coagulations factor like a foreign body and inactivates it using its immune system.

One essential risk factor for the development of these inhibitors is a pronounced F8 mutation. However, not all patients who have such a mutation develop inhibitors, and, vice versa, inhibitors can also be found in a part of the patients with only minor alterations of the F8 gene. What complicates understanding the underlying mechanisms even more is that antibodies against factor VIII can be detected in some healthy individuals, too.

Inhibitors against factor-VIII concentrates partly make treatments of the patients concerned very difficult, and in extreme cases, they can lead to uncontrollable bleedings. For this reason, the team of scientists of Dr Zoe Waibler, head of Section Product Testing of Immunological Biomedicines of the Division Immunology at the Paul-Ehrlich-Institut has performed research on the underlying mechanisms in search of a possibility to prevent the formation of these inhibitors.

In previous research activities, she and her team had shown that certain “danger signals” in the blood such as particular surface molecules of bacteria (LPS, lipopolysaccharides) that warn the body of a pathogenic agent will increase the immunogenicity of factor-VIII products [1]. Immunogenicity describes the ability of molecules to elicit an immune reaction. Another example of this is cell stress resulting from surgical intervention, which transmits danger signals by releasing particular substances.

The increased immunogenicity of factor-VIII products causes so-called dendritic cells (DCs) to be activated to an increasing extent. These immune cells present antigens on their surface, i.e. molecular structures against which an immune response can be mediated. They form part of the innate immune system. In connection with other molecules, this leads to the formation of a subgroup of immune cells of the acquired immune system, the CD4-positive T cells, which are also called T helper cells.

Waibler’s team was now able to show that DCs, which are activated by the factor-VIII concentrate and the danger signal LPS synergistically, mediate a considerably stronger T helper cell activation than DCs, which were pre-treated solely with either factor VIII or LPS alone. In addition, they were able to clarify the dependency of T-cell activation on further immunological processing steps.

“Our results are another step on the road towards clarifying these complex immunological processes. This is a prerequisite for developing new approaches to haemophilia therapies which prevent the formation of these inhibitors against factor-VIII products”, said Waibler when explaining the significance of the results.

1. Miller L et al.: Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products. Thromb Haemost. 2015 Aug;114(2):268-76

Original publication:
(DOI:)

Miller L, Ringler E, Kistner KM, Waibler Z; ABIRISK Consortium (2017): Human dendritic cells synergistically activated by FVIII plus LPS induce activation of autologous CD4+ T cells. Thromb Haemost. 2018 Mar 19. doi: 10.1055/s-0038-1637734

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

https://www.ncbi.nlm.nih.gov/pubmed/?term=Human+dendritic+cells+synergistically+... - Abstract
https://www.pei.de/EN/information/journalists-press/press-releases/2018/05-haemo... press release

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>