Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haemophiliacs and their treatment – danger signals involved in immune response against factor-VIII

28.03.2018

In patients with haemophilia A, the missing blood coagulation factor VIII is administered, and thus replaced, intravenously. A part of the patients, however, develops antibodies (inhibitors) against factor VIII, which, in the worst case scenario, can cause uncontrolled bleeding. Researchers of the Paul-Ehrlich-Institut (PEI) have now established that the adverse immune reactions occur in the presence of so-called danger signals. After antigen processing, mainly memory T cells are activated. The results are published in Thromb. Haemost. in its online edition of 19 March 2018.

Haemophilia A is the most common congenital blood coagulation disorder. It is caused by various mutations in the so-called factor VIII (F8) gene. Depending on the type of mutation, the coagulation factor VIII is not formed in sufficient quantities or is missing entirely.


Photographic image taken under an electron microscope: Red blood cells, leukocytes and platelets

National Cancer Institute

The missing coagulation factor is replaced by intravenous administration of so-called factor-VIII concentrates. However, around a quarter of treated patients who have severe haemophilia develop antibodies against factor VIII – the body treats the coagulations factor like a foreign body and inactivates it using its immune system.

One essential risk factor for the development of these inhibitors is a pronounced F8 mutation. However, not all patients who have such a mutation develop inhibitors, and, vice versa, inhibitors can also be found in a part of the patients with only minor alterations of the F8 gene. What complicates understanding the underlying mechanisms even more is that antibodies against factor VIII can be detected in some healthy individuals, too.

Inhibitors against factor-VIII concentrates partly make treatments of the patients concerned very difficult, and in extreme cases, they can lead to uncontrollable bleedings. For this reason, the team of scientists of Dr Zoe Waibler, head of Section Product Testing of Immunological Biomedicines of the Division Immunology at the Paul-Ehrlich-Institut has performed research on the underlying mechanisms in search of a possibility to prevent the formation of these inhibitors.

In previous research activities, she and her team had shown that certain “danger signals” in the blood such as particular surface molecules of bacteria (LPS, lipopolysaccharides) that warn the body of a pathogenic agent will increase the immunogenicity of factor-VIII products [1]. Immunogenicity describes the ability of molecules to elicit an immune reaction. Another example of this is cell stress resulting from surgical intervention, which transmits danger signals by releasing particular substances.

The increased immunogenicity of factor-VIII products causes so-called dendritic cells (DCs) to be activated to an increasing extent. These immune cells present antigens on their surface, i.e. molecular structures against which an immune response can be mediated. They form part of the innate immune system. In connection with other molecules, this leads to the formation of a subgroup of immune cells of the acquired immune system, the CD4-positive T cells, which are also called T helper cells.

Waibler’s team was now able to show that DCs, which are activated by the factor-VIII concentrate and the danger signal LPS synergistically, mediate a considerably stronger T helper cell activation than DCs, which were pre-treated solely with either factor VIII or LPS alone. In addition, they were able to clarify the dependency of T-cell activation on further immunological processing steps.

“Our results are another step on the road towards clarifying these complex immunological processes. This is a prerequisite for developing new approaches to haemophilia therapies which prevent the formation of these inhibitors against factor-VIII products”, said Waibler when explaining the significance of the results.

1. Miller L et al.: Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products. Thromb Haemost. 2015 Aug;114(2):268-76

Original publication:
(DOI:)

Miller L, Ringler E, Kistner KM, Waibler Z; ABIRISK Consortium (2017): Human dendritic cells synergistically activated by FVIII plus LPS induce activation of autologous CD4+ T cells. Thromb Haemost. 2018 Mar 19. doi: 10.1055/s-0038-1637734

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

https://www.ncbi.nlm.nih.gov/pubmed/?term=Human+dendritic+cells+synergistically+... - Abstract
https://www.pei.de/EN/information/journalists-press/press-releases/2018/05-haemo... press release

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>