Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Growing” molecules on plates

10.09.2014

Thousands of potentially bioactive molecules can be made rapidly by mixing 20 or so building blocks together. Researchers at ETH-Zürich (Switzerland) and the Institute of Transformative Bio-Molecules (Japan) have developed a new technique to generate large libraries of novel organic molecules, a method that was inspired by Nature.

Microorganisms are able to synthesize mixtures of complex organic molecules, such as antibiotics from simple organic building blocks by fermentation. Prof. Jeffrey Bode, who led the research, was inspired by this approach and realized that synthetic chemistry could also “grow” biologically active molecules by using his powerful bond making reaction, KAHA (alpha-ketoacid-hydroxylamine) ligation.


Figure 1. “Synthetic Fermentation” - synthesizing libraries of compounds on well-plates that can be directly tested for biological activity such as in the lab, at high schools and on farms.

Copyright : ITbM, Nagoya University


Figure 2. a) Synthetic fermentation to form thousands of peptides from a relatively small number of building blocks; b) KAHA ligation to build peptide chains.

Copyright : ITbM, Nagoya University

This reaction enables rapid formation of an amide bond, found in peptides and proteins, simply by mixing in order an alpha-ketoacid molecule and a hydroxylamine molecule in water. No additional reagents and no subsequent purification are required in the reaction.

“Synthetic fermentation” applies the KAHA ligation reaction to build ‘cultures’ of compounds in well-plates that can be subjected directly to biological assays. Prof. Bode’s technique has demonstrated that about 6,000 unnatural peptides can be made from only 23 building blocks, and has succeeded in identifying a biologically active molecule towards treatment of the hepatitis C virus.

Details of this new technique, published online on September 7, 2014 in Nature Chemistry, is expected to be useful for rapidly generating thousands or millions of molecules, which will be useful for drug discovery as well as for onsite screening of biologically active molecules.

“Our dream is to provide a “do-it-yourself” method – one that can be done by anyone, anywhere to make and assess millions of organic molecules, without using dangerous reagents,” says Prof. Bode. “We envision that synthetic fermentation could be used by farmers to generate and identify new anti-bacterial or anti-fungal molecules to treat plant diseases,” describes Prof. Bode.

Organic synthesis often involves multiple steps, the use of toxic reagents and requires tedious purification prior to biological screening. Prof. Bode says, “The hardest part of this work was looking beyond the entrenched idea that we needed single, pure compounds to do the biological screening. It was only when we looked at the way Nature makes new medicines – by producing dozens of similar compounds together – that we realized we could use our chemistry to do something very similar. By taking this inspiration, we found that we could make thousands of compounds from a few building blocks in a few hours, rather than the months it would normally take.”

“By providing a safe and simple method to form new organic molecules, we hope to establish kits combined with a suitable assay that can be used by anyone to discover new molecules with a desired function or property,” says Prof. Bode.

This article “Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents” by Yi-Lin Huang and Jeffrey W. Bode is published online on September 7, 2014 in Nature Chemistry as an Advanced Online Publication.
DOI: 10.1038/nchem.2048

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a “Mix-Lab” style, where international young researchers from multidisciplinary fields work together side-by-side in the same lab. Through these endeavors, ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society.

Author Contact
Professor Jeffrey Bode
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
E-mail: bode@itbm.nagoya-u.ac.jp

ETH-Zürich
Laboratory of Organic Chemistry
HCI F 315, Wolfgang-Pauli-Strasse 10
8093 Zürich, Switzerland
Tel: +41-44-633-2103
E-mail: bode@org.chem.ethz.ch

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: press@itbm.nagoya-u.ac.jp

Nagoya University Public Relations Office
TEL: +81-52-789-2016 FAX: +81-52-788-6272
E-mail: kouho@adm.nagoya-u.ac.jp

Associated links

Journal information

Nature Chemistry

Ayako Miyazaki | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Nature bio-molecules blocks compounds peptides purification reaction steps synthetic thousands

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>