Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing brain cancer in a dish

24.07.2018

For the first-time, researchers at IMBA- Institute of Molecular Biotechnology of the Austrian Academy of Sciences – develop organoids, that mimic the onset of brain cancer. This method not only sheds light on the complex biology of human brain tumors but could also pave the way for new medical applications.

Brain tumors are among the most aggressive and deadly cancers and a leading cause of cancer-related death in children and young adults.


Neoplastic cerebral organoid with GFP-positive tumor regions (green), which demonstrates glioblastoma-like cellularity.

IMBA


Artistic interpretation of the neoplastic novel brain-cancer or neoplastic organoids which offer a means to investigate, how some of these mutations are driving forces in tumors.

BeataScienceArt

Glioblastoma is a particularly aggressive form of brain tumor that is characterized by a very rapid tumor growth of glia cells – the most abundant cell types in the central nervous system, that surround and support neurons. The tumor is notoriously difficult to treat as it forms tentacle-like structures, that makes it difficult to remove the tumors surgically.

Also, glioblastoma tend to liaise with blood vessels, helping cancerous cells to grow and spread very quickly. With each cell division, they accumulate mutations that can render them resistant to drugs. Because of the molecular characteristics of the human brain, it has been very difficult for scientist to find a suitable model organism to study brain cancers.

Organoid technology could now lead to a paradigm shift in studying glioblastoma and other forms of brain cancers. In recent years, researchers have managed to develop more and more lab grown organ like structures, or organoids. Already in 2013 Jürgen Knoblich and his team at IMBA were the first ones to use brain- organoids from iPS cells for studying molecular and developmental characteristics as well as neurological diseases of the human brain.

Now, they have succeeded to grow one of the deadliest cancers, brain cancer, in a dish. The novelty: this method allows the researchers to replicate the process of brain carcinogenesis in a dish, where they can observe brain cancer onset already at its early stages and watch the brain-organoid growing a tumor in a dish.

In a publication in the current edition of the journal Nature Methods the group reports on the new neoplastic cerebral organoids they have developed to study brain tumors. These organoids faithfully reproduce unique aspects of the human brain, such as its diverse cell types and the stages by which it develops, allowing scientists to get a handle on the ways tumors arise, and also provide a system to try out new cancer therapies.

“For the first time, we established a human model for brain cancer to rapidly test or screen for the tumorigenic potential of gene mutations found from cancer genome sequencing projects. Using genome-editing techniques, we introduced clinically-relevant mutations into the cerebral organoids. With this method, we are trying to mimic the brain tumor onset in vivo by only mutating a very small population of cells,” explains Shan Bian, postdoc at IMBA and first author of the study.

Over the past few years, huge cancer genome sequencing projects have catalogued thousands of mutations found in patient tumors. Such genetic defects arise through natural mistakes in the copying of DNA, through the consumption of carcinogens or other causes. They trigger fundamental changes in healthy cells that cause them to spin out of control, reproducing at an astounding pace.

Each time such a cell divides it may generate new mutations, leaving scientists with a huge puzzle to assemble. The novel brain-cancer or neoplastic organoids now offer a means to investigate, how some of these mutations are driving forces in tumors, crucial in triggering the onset of cancer, and necessary to address through treatments, while others are simply side effects.

From bench to bedside
The scientists carried out studies of these miniature tumors to identify additional changes they had undergone, identifying new markers that may help in diagnosing the disease and classifying the tumor a patient has.

Once a tumor has developed, the scientists can target a specific mutation to determine whether the defect is also essential for the long-term survival of the tumor. Any change that causes it to shrink or disappear makes a good candidate for future therapies.

The scientists tested this principle by applying a drug called Afatinib, which is currently being used in clinical trials as a treatment for glioblastoma. They found that after 40 days, administration of the drug significantly reduced the number of tumor cells in two combinations of mutations, but not in the third or in cells with too much MYC. Afatinib inhibits a molecule called EGFR – which is specifically overexpressed in those two types of tumors. When testing four additional EGFR inhibitors used in therapies, a drug called Erlotinib significantly reduced the number of tumor cells as well, while the effects of others were minimal.

"These results show that brain organoids also have significant impact for cancer research and public health. We can now develop organoids from brain tumor patients allowing us to test the efficacy of different combinations of therapies," says stem cell pioneer Knoblich, who is interim director of IMBA. "As a next step it will be important to foster clinical partnerships, so we can work towards translating our findings from the bench to the bedside."

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.
www.imba.oeaw.ac.at

About Vienna BioCenter
Vienna BioCenter (VBC) is a leading life sciences hub in Europe, offering an extraordinary combination of research, business and education in a single location. About 1,700 employees, 86 research groups, 18 biotech companies, 1,300 students and scientists from 70 nations create a highly dynamic and stimulating environment. www.viennabiocenter.org

Wissenschaftliche Ansprechpartner:

Evelyn Devuyst
evelyn.devuyst@imba.oeaw.ac.at

Ines Méhu-Blantar
ines.mehu-blantar@imba.oeaw.ac.at

Originalpublikation:

Bian et al., 2018, 'Genetically engineered cerebral organoids model brain tumor formation', Nature Methods; doi: 10.1038/s41592-018-0070-7

Weitere Informationen:

http://www.imba.oeaw.ac.at/about-imba/information-material-download/
http://www.imba.oeaw.ac.at

Mag. Evelyn Devuyst IMBA Communications | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>