Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking, lifesaving TB vaccine a step closer

08.10.2008
Researchers at Aberystwyth University, following a number of years of investment by the Biotechnology and Biological Sciences Research Council (BBSRC), have licensed ground-breaking research to a non-profit product development partnership working to develop new, more effective vaccines against Tuberculosis (TB). This development will give hope that significantly better prevention and treatment of TB will be available within the next few years.

The Aeras Global TB Vaccine Foundation, which was founded to develop new, cost-effective TB vaccines for use in the developing world, has licensed a discovery of a protein that is able to 'wake up' dormant Mycobacterium tuberculosis bacteria that cause TB.

The research and the fundamental knowledge that came out of it could be used to develop a vaccine that either stops infecting TB bacteria from taking hold or, for the one in every three people world-wide who are already carrying a latent TB infection, prevents dormant bacteria from 'waking up'. Another possible strategy could be to deliberately 'wake up' dormant bacteria in a controlled way so they can be destroyed with antibiotics.

In the late 1990s, researchers funded by BBSRC discovered a new family of proteins that were able to resuscitate bacteria found harmlessly in and around the human body. When 'awoken' from dormancy the bacteria were then much more susceptible to attack from antibiotics. The team led by Professors Mike Young and Doug Kell at Aberystwyth University together with Prof Arseny Kaprelyants of the Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, identified the gene in the bacterium that produced the protein and went on to discover the corresponding genes in M. tuberculosis. This research has now been licensed by Aeras after years of development. Aeras plans to take its recombinant BCG (AERAS-407) vaccine, based in part on the Aberystwyth work, to clinical trial in 2009.

Prof Young, now based in Aberystwyth University's newly formed Institute of Biological, Rural and Environmental Studies, said: "Current TB treatments can go on for over six months and can still leave bacteria in the body that can cause the disease when they resume active growth and multiplication. Our discovery, which is now being developed into a vaccine, might help prevent the establishment of persistent infections in the first place or, alternatively, it might prevent persisting organisms in individuals with latent TB from reawakening at all.

"TB kills around 1.7 million people around the world every year. I hope that our research will now be rapidly translated into a vaccine that can help as many of these people as possible."

Dr Alf Game, BBSRC Deputy Director of Research, said: "This discovery came out of research in the basic biology of a different bacterium. It shows that we need to strive to understand the fundamental workings of the world around us and from that we can identify how to tackle challenges, such as dangerous diseases, that we all face."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>