Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green chemistry: The heat is on

28.03.2011
New findings reveal how layered metallic hydroxide crystals can trap carbon dioxide gas at elevated temperatures

‘Scrubbing’ carbon dioxide (CO2) from industrial exhaust gases is one of the critical steps needed to reduce CO2 emissions. It remains a major challenge for researchers, however, to find materials that can reliably soak up CO2 under the extreme conditions common to real-world industrial processes.

A study by Jizhong Luo and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore[1] now promises to help mitigate CO2 emissions by uncovering never-before-seen structural details of high-temperature sorption materials called layered double hydroxides (LDHs).

Composed of positively charged sheets of metal oxides interspersed with relatively open spaces holding anions and water molecules, LDHs have large, active surfaces that can react with CO2 and transform the gas into solid carbonate ions. Recently, scientists have used LDHs as part of an innovative technology called the sorption-enhanced water-gas shift that combines high-temperature hydrocarbon processing with CO2 removal in a single step. However, when LDHs reach their adsorption limits, they must be regenerated by heating to temperatures high enough to induce an internal structural transformation—a process known as calcination that can eventually destabilize the metal oxide layers.

Luo and his co-workers set out to understand the high-temperature performance of these adsorbents by adjusting the chemical composition of a typical magnesium–aluminum LDH. The researchers replaced the triply charged aluminum cations with iron, gallium and manganese cations and systematically observed how these substitutions affected structure, adsorption and thermal stability. Their results revealed, for the first time, the role such metal species play in LDH-based CO2 fixation.

Surprisingly, the researchers found that the new cations influenced the physical properties of the LDH more than its chemical behavior. “Generally, people may think that differences in chemical composition between LDHs will lead to different CO2 adsorption sites, and therefore different carbon capture capacities,” notes Luo. “However, our research demonstrates that the temperature-dependent structural evolution of LDHs is a much more important parameter.” Luo and his co-workers showed that distinct calcination temperatures for each LDH compound, as well as a unique quasi-amorphous phase, are key to maximizing CO2 adsorption levels.

The empirical ground-rules laid out by this study should help researchers select even better candidates for industrial CO2 scrubbers. “High-temperature CO2 adsorbents are a hot topic right now in carbon capture and sequestration,” Luo says. “In the future, we plan to use combinations of triply charged metal cations to better tune the CO2 capturing performance of LDHs.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

[1] Wang, Q. et al. The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture. ChemSusChem 3, 965–973 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6295
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>