Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green C-fixing for a cleaner future

28.11.2011
Copper–carbene catalysts reveal the critical interactions needed to turn waste carbon dioxide into chemical feedstocks

Using fixation reactions to convert free carbon dioxide (CO2) into different organic molecules is an attractive strategy to cut industrial greenhouse gas levels with marginal waste.

Now, broadening the scope of CO2 fixation is possible using a method developed by a research team in Japan led by Zhaomin Hou from the RIKEN Advanced Science Institute in Wako1. The method uses a ‘green’ catalyst system that transforms alkyl–boron molecules into carboxylic acids—an important ingredient for pharmaceutical production.

Organic boron compounds are attractive fixation substrates because they readily participate in carbon–carbon bond-forming reactions. Recently, chemists have used transition metal catalysts to activate hydrocarbons bonded to oxygenated boron esters; addition of CO2 then splits off the activated group and generates a carboxylic acid derivative. However, attempts to reproduce this chemistry with alkylboranes—a widespread class of important synthetic reagents—have had limited success because the so-called ‘catalytic transition metal alkyl’ intermediates are usually unstable and decompose before reacting with CO2.

Hou and colleagues turned to an innovative chemical system to resolve this instability. By combining electron-donating, bulky molecules called N-heterocyclic carbenes (NHCs) with copper atoms, they made metal alkyl complexes that can promote carbon–carbon bond formation with CO2 under mild conditions and at lower cost than most precious metal catalysts—ideal characteristics for sustainably recycling CO2 emissions.

First, the researchers produced an easily activated alkylborane by connecting borabicyclononane (BBN)—a highly strained set of boron–hydrocarbon rings—to the terminal atom of a carbon–carbon double bond. In this approach, the target hydrocarbon for CO2 addition is physically and electronically quite different from the two carbon–boron bonds of the BBN rings.

Hou and colleagues then mixed the alkylborane with the copper–NHC catalyst, a base, and CO2 in a pressurized chamber. After one day at 70 °C, they found that the target had transformed into a new carboxylic acid with near-quantitative yields. Diverse molecules bearing aromatic, halogenated, and bulky functional groups could all act as CO2 fixation substrates using this technique.

The copper–NHC catalyst offered another advantage to the team: a unique chemical environment that enabled isolation of several catalytic intermediates as solid crystals. X-ray measurements of these structures provided the first hard evidence that bonding interactions between alkoxide base molecules, copper atoms, and alkylboranes are critical to enabling CO2 addition (Fig. 1). “Fine-tuning the combination of central metals, bases, and supporting ligands will eventually lead to more efficient and selective catalysts,” notes Hou.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>