Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green C-fixing for a cleaner future

28.11.2011
Copper–carbene catalysts reveal the critical interactions needed to turn waste carbon dioxide into chemical feedstocks

Using fixation reactions to convert free carbon dioxide (CO2) into different organic molecules is an attractive strategy to cut industrial greenhouse gas levels with marginal waste.

Now, broadening the scope of CO2 fixation is possible using a method developed by a research team in Japan led by Zhaomin Hou from the RIKEN Advanced Science Institute in Wako1. The method uses a ‘green’ catalyst system that transforms alkyl–boron molecules into carboxylic acids—an important ingredient for pharmaceutical production.

Organic boron compounds are attractive fixation substrates because they readily participate in carbon–carbon bond-forming reactions. Recently, chemists have used transition metal catalysts to activate hydrocarbons bonded to oxygenated boron esters; addition of CO2 then splits off the activated group and generates a carboxylic acid derivative. However, attempts to reproduce this chemistry with alkylboranes—a widespread class of important synthetic reagents—have had limited success because the so-called ‘catalytic transition metal alkyl’ intermediates are usually unstable and decompose before reacting with CO2.

Hou and colleagues turned to an innovative chemical system to resolve this instability. By combining electron-donating, bulky molecules called N-heterocyclic carbenes (NHCs) with copper atoms, they made metal alkyl complexes that can promote carbon–carbon bond formation with CO2 under mild conditions and at lower cost than most precious metal catalysts—ideal characteristics for sustainably recycling CO2 emissions.

First, the researchers produced an easily activated alkylborane by connecting borabicyclononane (BBN)—a highly strained set of boron–hydrocarbon rings—to the terminal atom of a carbon–carbon double bond. In this approach, the target hydrocarbon for CO2 addition is physically and electronically quite different from the two carbon–boron bonds of the BBN rings.

Hou and colleagues then mixed the alkylborane with the copper–NHC catalyst, a base, and CO2 in a pressurized chamber. After one day at 70 °C, they found that the target had transformed into a new carboxylic acid with near-quantitative yields. Diverse molecules bearing aromatic, halogenated, and bulky functional groups could all act as CO2 fixation substrates using this technique.

The copper–NHC catalyst offered another advantage to the team: a unique chemical environment that enabled isolation of several catalytic intermediates as solid crystals. X-ray measurements of these structures provided the first hard evidence that bonding interactions between alkoxide base molecules, copper atoms, and alkylboranes are critical to enabling CO2 addition (Fig. 1). “Fine-tuning the combination of central metals, bases, and supporting ligands will eventually lead to more efficient and selective catalysts,” notes Hou.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>