Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great tits: birds with character

10.02.2010
Gene variation is the reason that some great tit populations are more curious than others

In humans and animals alike, individuals differ in sets of traits that we usually refer to as personality. An important part of the individual difference in personality is due to variation in the underlying genes.

One gene, the dopamine receptor D4 gene, however, is known to influence novelty seeking and exploration behaviour in a range of species, including humans and birds. Researchers of the Max Planck Institute for Ornithology in Seewiesen now show that the gene's influence on birds' behaviour differs markedly between wild populations of great tits (Molecular Ecology, Feb. 9th, 2010).

In 2007, researchers of the Max Planck Institute for Ornithology found a gene related to individual variation in exploratory behaviour in great tits (see "Character-gene" makes songbirds curious). Birds with a certain variant of this so-called "dopamine receptor D4 gene" (DRD4 gene) showed stronger novelty seeking and exploration behaviour than individuals with other variants. This association was originally tested and found in a lab-raised group of birds.

Now, a large international group of researchers around Bart Kempenaers, director of the Max Planck Institute for Ornithology, Germany, repeated the test in adult wild birds captured in the field. Research groups from the Centre for Terrestrial Ecology in Heteren (NL), the Universities of Antwerp (Belgium) and Groningen (NL), and the Edward Grey Institute of field Ornithology in Oxford (UK) all measured exploratory behaviour of large numbers of great tits in a similar way. And they brought their data together to test the generality of the association between the different gene variants and exploration behaviour. "To our knowledge, this is the most extensive study of gene variants underlying personality-related behavioural variation in a free-living animal to date, and the first to compare different wild populations", says Peter Korsten, first author and a former member of Kempenaers' department.

Similar results in great tits and humans

To their surprise, the researchers found the association between the gene and the behaviour present in one population, but not in three others. "It was important to confirm the association between the DRD4 variants and exploratory behaviour in the original population", says Kempenaers, but he adds "We do not yet understand the differences between populations". However, the results mirror the outcome of similar research into gene-personality associations in humans, which also varies between populations. More than 30 studies confirmed that the DRD4 gene is associated with novelty seeking in humans, but large differences between populations were observed, and several studies did not find an effect. "Perhaps further investigation of great tit populations could shed some light on the differences in outcome in the human populations", says Peter Korsten. The difference between populations is perhaps not that surprising, given the small effect of the gene's variants on the behaviour, and may be explained by a strong influence of the environment or through the effects of other (still unknown) genes. [SP]

Original work:
Peter Korsten, Jakob Mueller, Christine Hermannstädter, Karen Bouwman, Niels Dingemanse, Piet Drent, Miriam Liedvogel, Erik Matthysen, Kees van Oers, Thijs van Overveld, Samantha Patrick, John Quinn, Ben Sheldon, Joost Tinbergen and Bart Kempenaers: Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations.
Molecular Ecology pp. 832-843. Volume 19, Issue 4 from February 9, 2010
DOI: 10.1111/j.1365-294X.2009.04518.x
See also:
Barbara Tschirren and Staffan Bensch: Genetics of personalities: no simple answers for complex traits.
Molecular Ecology pp. 624-626, Volume 19, Issue 4 from February 9, 2010
DOI: 10.1111/j.1365-294X.2009.04519.x
Press release of the Max Planck Institute for Ornithology (May 2nd, 2007)
"Character-gene" makes songbirds curious
http://www.mpg.de/english/illustrationsDocumentation/documentation/
pressReleases/2007/pressRelease20070427/index.html
Contact:
Dr. Jakob Müller
Department of Behavioural Ecology and Evolutionary Genetics
Max Planck Institute for Ornithology, Seewiesen
Phone +49 (0)8157 932 - 312
E-mail: mueller@orn.mpg.de
Prof. Dr. Bart Kempenaers
Department of Behavioural Ecology and Evolutionary Genetics
Max Planck Institute for Ornithology, Seewiesen
Phone +49 (0)8157 932 - 334
E-mail: b.kempenaers@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Gesellschaft
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>