Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene underpins a new platform to selectively ID deadly strains of bacteria

20.03.2020

Prototype developed by Boston College-led team demonstrates the first selective, electrical detection of two pathogenic bacterial species

Using a single atom-thick sheet of graphene to track the electronic signals inherent in biological structures, a team led by Boston College researchers has developed a platform to selectively identify deadly strains of bacteria, an advance that could lead to more accurate targeting of infections with appropriate antibiotics, the team reported in the journal Biosensors and Bioelectronics.


The difficulty and expense of determining the precise pathogen causing an infection is a key part of the complexity of antibiotic treatments. A team led by Boston College researchers has developed a prototype sensor that uses an atom-deep sheet of graphene and peptides to rapidly reveal which bacterial species is in a sample and whether it is antibiotic resistant. The graphene field effect transistor (G-FET) achieved single-cell resolution and a 5-minute detection time, which could lead to more accurate targeting of infections with appropriate antibiotics.

Credit: Kenneth Burch, Boston College

The prototype demonstrates the first selective, rapid, and inexpensive electrical detection of the pathogenic bacterial species Staphylococcus aureus and antibiotic resistant Acinetobacter baumannii on a single platform, said Boston College Professor of Physics Kenneth Burch, a lead co-author of the paper.

The rapid increase in antibiotic resistant pathogenic bacteria has become a global threat, in large part because of the over prescription of antibiotics. This is driven largely by the lack of fast, cheap, scalable, and accurate diagnostics, according to co-author and Boston College Associate Professor of Biology Tim van Opijnen.

Particularly crucial is identifying the bacterial species and whether it is resistant to antibiotics, and to do so in a platform which can be easily operated at the majority of points of care. Currently such diagnostics are relatively slow - taking from hours to days - require extensive expertise, and very expensive equipment.

The BC researchers, working with colleagues from Boston University, developed a sensor, known as a graphene field effect transistor (G-FET), that can overcome critical shortcomings of prior detection efforts since it is a highly scalable platform that employs peptides, chains of multiple linked amino acids, which are inexpensive and easy-to-use chemical agents, according to co-author and BC Professor of Chemistry Jianmin Gao.

The team set out to show it could construct a device that can "rapidly detect the presence of specific bacterial strains and species, exploiting the large amount of electric charge on their surface and ability to capture them with synthetic peptides of our own design," said Burch.

The initiative built upon the earlier research of van Opijnen and Gao, who previously found peptides were highly selective, but at that time required expensive fluorescence microscopes for their detection. In addition to Burch, Gao, and van Opijnen, the lead co-authors of the paper included Boston University Assistant Professor of Chemistry Xi Ling.

The team modified existing peptides to allow them to attach to graphene, a single atomic layer of carbon. The peptides were designed to bind to specific bacteria, rejecting all others. In essence, the G-FET is able to monitor the electric charge on the graphene, while exposing it to various biological agents.

Due to the selectivity of the peptides, the researchers were able to pinpoint their attachment to the desired bacterial strain, the team reported in the article "Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs." By electrically monitoring the resistance and, ultimately, charge on the device, the presence of bacteria attached to graphene could be resolved, even for just a single cell.

To enable greater speed and high sensitivity, an electrical field was placed on the liquid to drive the bacteria to the device, again exploiting the charge on the bacteria, the team reported. This process, known as dielectrocphoresis, had never previously been applied to graphene-based sensors and could potentially open the door to dramatically improving efforts in that field to employ graphene for biosensing, the team reported.

"We were surprised how well the bacteria were electrically guided to the devices," said Burch. "We thought it would somewhat reduce the required time and needed concentration. Instead, it worked so well that the electric field was able to bring needed concentration of bacteria down by a factor of 1000, and reduce the time to detection to five minutes."

###

The team is now working to expand the number of pathogens that can be detected and demonstrate that it can work directly with samples from patients.

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu

Ed Hayward | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.bios.2020.112123

Further reports about: antibiotic bacteria bacterial species graphene pathogenic peptides single cell strains

More articles from Life Sciences:

nachricht Observing Phytoplankton via Satellite
20.03.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Antiviral Antibodies
20.03.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

Im Focus: Shaking off the correlated-electron traffic jam

An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating quasi two-dimensional material La2CuO4 (LCO) becomes a three-dimensional metal through laser irradiation. Surprisingly, the researchers found that specific vibrations of the crystal lattice are involved in this metallization process. A careful computational investigation revealed that the same vibrations that show up in this ultrafast movie can destabilize the insulating behavior all by themselves.

The condensed-matter physics world was shaken up when high-temperature superconductivity was reported in a copper oxide material in 1986 by Alex Müller and...

Im Focus: Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy

Permanent magnets akin to those used on refrigerators could speed the development of fusion energy - the same energy produced by the sun and stars.

In principle, such magnets can greatly simplify the design and production of twisty fusion facilities called stellarators, according to scientists at the U.S....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

70th Lindau Meeting: 660 young scientists from around 100 countries experience first “Lindau Moment" today

02.03.2020 | Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

 
Latest News

On the trail of organic solar cells’ efficiency

20.03.2020 | Power and Electrical Engineering

Graphene underpins a new platform to selectively ID deadly strains of bacteria

20.03.2020 | Life Sciences

New UCI-led study reveals how skin cells prepare to heal wounds

20.03.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>