Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gone with the wind

21.10.2015

Migratory birds need less time to travel longer routes when they optimize for wind support.

Each year migratory birds travel over thousands of kilometres. In spring and autumn, billions of individuals move from colder and less productive areas across vast distances to warmer and more productive places. To do so, however, it seems that the shortest route does not necessarily grant the fastest journey. Birds can save energy and time if they use wind support.


Based on the global weather data from the past 21 years, researchers have developed a model that allows them to calculate the optimal migration routes of migratory birds. It shows that the shortest flight time is not necessarily the result of the shortest route. The model also takes into account spatial and temporal changes in wind conditions.

© http://www.bioinfo.mpg.de/flyways / Nasa/ Blue Marble

Researchers at the Max Planck Institute for Ornithology in Radolfzell Germany have calculated optimal routes in respect to wind support globally. Their research shows that birds using optimal wind conditions can save up to a quarter of travel time.

Thus birds optimising on wind support should arrive earlier and in better conditions and have higher chances of survival and reproduction. The knowledge about such optimal flyways could spread over generations in migratory species.

On their migratory journey, birds cross oceans, the highest mountains, and deserts. The arctic tern, for example, holds the world record in annual avian travel distance, where it moves between its breeding grounds in the Arctic to winter in the Antarctic. Using satellite based technology, scientists are just on the verge of unravelling these phenomena.

Scientists, led by Kamran Safi at the Max Planck Institute for Ornithology have now calculated that the route with the shortest distance between two points on the globe almost never represents the fastest option. They propose that it is beneficial for migratory birds to take detours, thereby using wind support on their journeys.

"Of course the birds cannot forecast weather," says Bart Kranstauber, first author of the study. "But through natural selection or learning, it is possible that knowledge about the optimal route can spread in a species over time." This, however, only works because there are predictable patterns in the wind conditions over years

Tailwind saves energy

"Quite a few of the routes we calculated match what we know some birds actually do," explains Safi. And the models suggest that it is energetically cheaper to fly south to Africa in the autumn using a more easterly detour and to return to Europe on a westerly route, giving rise to a so-called "loop migration". This pattern matches what is known from the common cuckoo.

The birds can save up to a quarter of their time if they choose to optimise their route in respect to wind instead of simple distance. Thus, they probably would be less fatigued and have a head start when it is comes to occupying good nesting sites. This in turn can decrease mortality, reduce recovery times and overall increase reproductive output of those individuals taking the optimal routes. Travelling along optimal routes can therefore become the winning strategy through natural selection or tradition.

More than wind

Safi and his group use weather data collected from 1990 until 2010 and calculated the most efficient routes in respect to wind support for 102 departure and arrival locations in the northern hemisphere connecting to 65 locations in the southern hemisphere. And although the programme ignores all other important factors in bird migration, the results are a striking match for some known flyways.

Based on this model, the researchers want to investigate when and where bird migration deviates from the simple assumptions, adding more complexity to better understand the importance of additional factors for bird migration. "We now want to know where the model fails and why, which will help us to derive a better understanding of what actually shapes the fascinating phenomenon."

One of the still unresolved issues in bird migration is how birds navigate over such vast distances and can potentially master the task of following an optimal route.


Contact

Dr. Kamran Safi
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 150-132

Email: ksafi@orn.mpg.de


Daniel Piechowski
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 1501-19

Email: dpiechowski@orn.mpg.de


Original publication
B. Kranstauber, R. Weinzierl, M. Wikelski , and K. Safi

Global aerial flyways allow efficient travelling.

Ecology Letters; 19 October, 2015 (DOI: 10.1111/ele.12528)

Dr. Kamran Safi | Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Further information:
https://www.mpg.de/9710378/migratory-birds-flight-routes

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>