Gold nanoparticles bring scientists closer to a treatment for cancer

The team of researchers, led by Physics lecturer Dr Antonios Kanaras, showed that a small dose of gold nanoparticles can activate or inhibit genes that are involved in angiogenesis – a complex process responsible for the supply of oxygen and nutrients to most types of cancer.

“The peptide-functionalised gold nanoparticles that we synthesised are very effective in the deliberate activation or inhibition of angiogenic genes,” said Dr Kanaras.

The team went a step further to control the degree of damage to the endothelial cells using laser illumination. Endothelial cells construct the interior of blood vessels and play a pivotal role in angiogenesis.

The researchers also found that the gold particles could be used as effective tools in cellular nanosurgery.

Dr Kanaras adds: “We have found that gold nanoparticles can have a dual role in cellular manipulation. Applying laser irradiation, we can use the nanoparticles either to destroy endothelial cells, as a measure to cut the blood supply to tumours, or to deliberately open up the cellular membrane in order to deliver a drug efficiently.”

The researchers have published two related papers (NanoLett. 2011, 11 (3), 1358� Small 2011, 7, No. 3, 388�) with another one submitted for publication and four more planned throughout this year. Their major target is to develop a complete nanotechnology toolkit to manipulate angiogenesis.

Media Contact

Glenn Harris EurekAlert!

More Information:

http://www.soton.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors