Go with the Flow

The synthesis of peptides and proteins is an extremely complex matter, because they must be built up one amino acid at a time in repeated reaction and washing steps. Solid-phase synthesis has made this easier. Canadian researchers introduced a new variant of this technique in the journal Angewandte Chemie.

In their system, parallel syntheses take place in small regions on a paper support. The resulting peptide arrangements can be used in cell-based assays or in the search for 3D materials that support cell adhesion and growth.

In classical solid-phase synthesis, the growing peptide chain is fixed to a solid support—usually a polymer bead—so that the reagents can be rapidly and easily washed away after each step. Parallel solid-phase synthesis, known as SPOT synthesis, was developed as an alternative in the 1990s. This allows a large number of peptides to be obtained on a planar support with a small surface area.

SPOT synthesis has since been adapted for other applications, such as cell-based screening. The problem is that existing SPOT systems are not well-suited for chemical reactions. When individual drops of reagent are added by pipette, they wet small areas of the membrane—the SPOTs.

The circular spot of solvent absorbed by the membrane determines the size of the “reaction vessel”. Unlike in classical solid-phase synthesis, this limits the amounts of reagent, and flow-through conditions are not possible. This significantly limits the possible yields of the reactions.

A team headed by Frédérique Deiss and Ratmir Derda at the University of Alberta (Canada) has now found an elegant solution to this problem. The researchers used a Teflon coating to form a pattern of solvent-repellent barriers on a paper support. The pattern restricts the liquids to specific Teflon-free zones on the paper, forming small “reaction vessels” that can hold a larger volume than the usual SPOTs.

This not only allows for the use of excess volumes of reagents, but also allows for a flow-through reaction because the larger volume ensures for gravity-driven flow of the reagent solution through the paper. The flow rate can be varied by using paper of different porosity. This significantly improves yields.

There is an additional advantage to this method: the paper can be stacked or folded into thicker three-dimensional structures. The researchers were able to identify various peptides among those immobilized on the surface that support cell adhesion, growth, or differentiation in a three-dimensional environment.

About the Author

Ratmir Derda started his career as an assistant professor at the department of Chemistry at the University of Alberta in 2011. He is a principal investigator at the Alberta Glycomics Centre and Sentinel Bioactive Paper Network. In 2012, he received a Rising Star in Global Health Award from Grand Challenges Canada.

Author: Ratmir Derda, University of Alberta, Edmonton (Canada), http://derda.chem.ualberta.ca/contact/

Title: Flow-Through Synthesis on Teflon-Patterned Paper to Produce Peptide Arrays That Can Be Used for Cell-Based Assays

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402037

Media Contact

Ratmir Derda Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors