Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glycosylation: Mapping Uncharted Territory

21.09.2017

Glycosylation is the most abundant protein modification - over half of the proteins in our cells are ‘decorated’ with glycans. These sugar structures alter protein activities in all organisms – from bacteria to human - influencing fundamental processes, like protein folding and transport, cell migration, cell-cell interactions, and immune responses.

However, whereas massive inroads have been made into genomics, metabolomics, or protein and lipid research, glycosylation remains largely unexplored at the proteome scale. There are limited technologies for profiling the complex glycoproteome.


SugarQb is a platform that enables global insights into protein glycosylation and glycan modifications in biological systems.

Glycoproteins can differ not only by the number and location of glycosites, but also by the composition and structure of each glycan. Glycoproteomics is “one of the key frontiers of life sciences”, says study leader Josef Penninger, MD, IMBA Director.

The SugarQb Approach

To overcome the technical limitations that have stymied the field, Penninger’s group developed mass-spectrometry methods and algorithms that finally enable both the comprehensive identification of complex sugar structures and their mapping to sites within the corresponding proteins. Their novel comparative glycoproteomics platform is published in the current issue of Nature.

Termed SugarQb, for Sugar Quantitative Biology, their approach enables global insights into protein glycosylation and glycan modifications in biological systems. They applied this platform to two exciting proof-of-principle studies – an analysis of embryonic stem cell glycoproteomes, and the identification of glycoproteins required for ricin toxicity.

Glycosylated Stem Cell Factors

Using the novel SugarQb methodology, the authors established a first draft of the glycoproteomes of murine and human embryonic stem cells. Their results nearly doubled the number of all known glycoproteins in the entire literature.

They also uncovered multiple novel glycosylated proteins, including evolutionarily conserved as well as species-specific sugar modifications in murine and human stem cell pluripotency factors. Many of the glycosylated proteins they uncovered localize to the plasma membrane and are implicated in cell-to-cell signaling, cell interactions, as well as embryonic development.

Therapeutic Targets for Ricin

Ricin is a highly poisonous plant toxin and bioweapon. The smuggling of ricin raises concerns that it could be utilized by terrorists and terrorist organizations. Several US politicians - including President Barack Obama - received letters containing trace amounts of the poison. There are currently no antidotes for ricin exposure – so various groups, from pharmaceutical companies to the military, are interested in identifying therapies to treat or prevent ricin toxicity. Penninger’s group had just previously discovered that mutant cells defective for fucosylation, a type of glycosylation that adds fucose sugars, were resistant to ricin. However, the fucosylated targets supporting ricin toxicity were unknown.

Using SugarQb, the first authors Jasmin Taubenschmid, PhD student at IMBA, and proteome-researcher Johannes Stadlmann, could now obtain the glycoproteomes of these ricin-resistant cells: the glycoproteins that were altered in the mutant cells might play a role in their resistance.

Indeed, the team discovered six new players that orchestrate ricin toxicity. Loss of any one of these proteins rendered human cells ricin resistant, just like the cells defective for fucosylation. Their findings suggest that fucosylation of these new players is required for ricin sensitivity and provide many new therapeutic targets for drug discovery.

SugarQb is freely available to all scientists. “We hope that our platform will allow research teams all over the world to map this uncharted territory by identifying the sugar structures and their positions on the corresponding proteins,” says Johannes Stadlmann.

“Glycosylation plays a fundamental role in many diseases, including cancer –SugarQb will allow scientists to uncover new mechanisms in biology and treatment strategies for disease. It could also be used by clinicians to define aberrant glycoproteomic signatures as biomarkers of disease and to track responses to therapy,” adds Josef Penninger, last author and scientific director of IMBA.

Original paper: Stadlmann, Taubenschmid et al. „Comparative glycoproteomics of stem cells identifies new players in ricin toxicity”, Nature doi:10.1038/nature24015

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a basic research institute of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. www.imba.oeaw.ac.at

About the Vienna BioCenter
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,700 employees, more than 1,300 students, 86 research groups, 17 biotech companies, and scientists from more than 40 nations create a highly dynamic environment. This research was part of the VBC PhD Programme. www.viennabiocenter.org

Mag. Evelyn Devuyst | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>