Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Fingerprints

01.08.2012
Researchers make latent fingerprints visible with help from electrochemiluminescence

Fingerprints are not just important in forensics and the identification of people; they can also be used for security clearance, access control, and the authentication of documents. In the journal Angewandte Chemie, Chinese researchers have now introduced a new fast method to make fingerprints visible at high resolution.



Fingerprints consist of sweat, oil, and compounds picked up from the environment. Latent fingerprints are often not identifiable with the naked eye; but many methods have been developed to make them visible. A team led by Bin Su at Zhejiang University (Hangzhou, China) has now added another interesting method to the mix. Their process is based on electrochemiluminescence.

Electrochemiluminescence consists of the following phenomenon: application of an electric voltage causes electrons transferred to an electrode from a chemical compound, such as a ruthenium complex, which further reacts with a partner, typically tripropylamine. The product formed is in an electronically excited state; it returns to its ground state by giving off light.

The researchers use a small glass plate coated with indium tin oxide or just a piece of stainless steel plate as the electrode. A fingerprint is transferred to this plate and then a solution containing the reactants is added. In the places where the fat-containing components of the fingerprint cover the plate, the electrode is inactive; the electrochemical reaction cannot take place, and no light is emitted. This produces a negative image of the fingerprint that can be recorded with a CCD camera.

This direct, fast, and simple method makes both fresh and old fingerprints visible without destroying them. The fingerprints are so well-resolved that it is possible to make out not only the ridge pattern, but also fine details like the branching and ends of lines, and even the tiniest features, like the distribution of pores in the grooves. These details are helpful in the identification of incomplete fingerprints. No complex procedures are needed to prepare the sample. In addition, there is no vapor or dusting involved for the user, unlike in many conventional processes.

Electrochemiluminescence can also be used in a second mode, which shows the fingerprint as a positive image. In this case, the fingerprints are first treated with a reagent that binds to components of the fingerprints. After the reaction partners are applied, only the lines emit light. This mode could be a starting point for the development of methods to detect drugs and other substances that the person who made the prints either ingested or came into contact with.

About the Author
Dr. Bin Su is a Research Professor at Zhejiang University (Hangzhou, China) with appointments in analytical chemistry and electrochemistry. His main interests are electrochemiluminescence imaging, electrochemical biosensors, and electrochemistry at liquid/liquid interfaces. He was the recipient of the Chinese Government Award for Outstanding Students Abroad in 2005.
Author: Bin Su, Zhejiang University, Hangzhou (China), http://mypage.zju.edu.cn/en/binsu/
Title: Imaging Latent Fingerprints by Electrochemiluminescence
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203815

Bin Su | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>