Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Fingerprints

01.08.2012
Researchers make latent fingerprints visible with help from electrochemiluminescence

Fingerprints are not just important in forensics and the identification of people; they can also be used for security clearance, access control, and the authentication of documents. In the journal Angewandte Chemie, Chinese researchers have now introduced a new fast method to make fingerprints visible at high resolution.



Fingerprints consist of sweat, oil, and compounds picked up from the environment. Latent fingerprints are often not identifiable with the naked eye; but many methods have been developed to make them visible. A team led by Bin Su at Zhejiang University (Hangzhou, China) has now added another interesting method to the mix. Their process is based on electrochemiluminescence.

Electrochemiluminescence consists of the following phenomenon: application of an electric voltage causes electrons transferred to an electrode from a chemical compound, such as a ruthenium complex, which further reacts with a partner, typically tripropylamine. The product formed is in an electronically excited state; it returns to its ground state by giving off light.

The researchers use a small glass plate coated with indium tin oxide or just a piece of stainless steel plate as the electrode. A fingerprint is transferred to this plate and then a solution containing the reactants is added. In the places where the fat-containing components of the fingerprint cover the plate, the electrode is inactive; the electrochemical reaction cannot take place, and no light is emitted. This produces a negative image of the fingerprint that can be recorded with a CCD camera.

This direct, fast, and simple method makes both fresh and old fingerprints visible without destroying them. The fingerprints are so well-resolved that it is possible to make out not only the ridge pattern, but also fine details like the branching and ends of lines, and even the tiniest features, like the distribution of pores in the grooves. These details are helpful in the identification of incomplete fingerprints. No complex procedures are needed to prepare the sample. In addition, there is no vapor or dusting involved for the user, unlike in many conventional processes.

Electrochemiluminescence can also be used in a second mode, which shows the fingerprint as a positive image. In this case, the fingerprints are first treated with a reagent that binds to components of the fingerprints. After the reaction partners are applied, only the lines emit light. This mode could be a starting point for the development of methods to detect drugs and other substances that the person who made the prints either ingested or came into contact with.

About the Author
Dr. Bin Su is a Research Professor at Zhejiang University (Hangzhou, China) with appointments in analytical chemistry and electrochemistry. His main interests are electrochemiluminescence imaging, electrochemical biosensors, and electrochemistry at liquid/liquid interfaces. He was the recipient of the Chinese Government Award for Outstanding Students Abroad in 2005.
Author: Bin Su, Zhejiang University, Hangzhou (China), http://mypage.zju.edu.cn/en/binsu/
Title: Imaging Latent Fingerprints by Electrochemiluminescence
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203815

Bin Su | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>