Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glioblastomas growing from cancer stem cells that use Sonic Hedgehog protein signaling mechanisms appear to be more aggressive

28.10.2008
Mechanism in cells that generate malignant brain tumors may offer target for gene therapy

Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute who first isolated cancer stem cells in adult brain tumors in 2004 have now identified a molecular mechanism that is involved in the development of these cells from which malignant brain tumors may originate. This could offer a target for scientists seeking treatments that would kill malignant brain tumors at their source and prevent them from recurring.

Normal stem cells are “immature” cells that have the potential to become any of several types of cells. Cancer stem cells have the same multi-potent and self-renewing properties, but instead of producing healthy cells, they propagate cancer cells. Theoretically, if these “mother cells” can be destroyed, the tumor will not be able to sustain itself. On the other hand, if these cells are not removed or destroyed, the tumor will continue to return despite the use of existing cancer-killing therapies.

Glioblastoma multiforme is the most malignant form of tumor that develops in the brain, but not all glioblastomas are identical. Subgroups are comprised of cells originating from different brain tumor stem cells with unique genetic characteristics that use different signaling pathways in their development and growth. The Cedars-Sinai researchers are building genetic “profiles” of these cancer stem cells and the tumors they appear to produce.

In this study, published in the journal Stem Cells (Stem Cells Express online Sept 11., ahead of print), the researchers identified a subset of brain tumor stem cells that is dependent on a protein called Sonic Hedgehog and another subset that is not Hedgehog dependent. The brain tumors resulting from each subset retained the “signaling dependency” characteristics of the mother cells, and in laboratory experiments and studies in laboratory mice, pathway-specific blocking interventions prevented the brain tumor stem cells from being able to renew themselves.

Although cancer stem cell involvement in the genesis of brain tumors is hypothetical and in the early stages of scientific discovery, the Sonic Hedgehog signaling mechanism appears to be one of the molecular mechanisms regulating both normal stem cell growth and cancer stem cell growth.

“According to our analysis, patients who have malignant brain tumors produced from cancer stem cells that rely on this mechanism have a shorter survival than those who don’t,” said John S. Yu, M.D., director of Surgical Neuro-oncology at Cedars-Sinai and senior author of the Stem Cells article.

Further investigation of these and other pathways may allow scientists to devise therapies to block the underlying cancer-causing mechanisms with genes or small molecules, according to the research team.

“Understanding the mechanisms behind cancer stem cells, which may be the root and cause of cancers, may allow us to determine how these cancers start and, more importantly, how best to target them to prevent their growth and spread,” said Keith L. Black, M.D., chairman of the Department of Neurosurgery, director of the Maxine Dunitz Neurosurgical Institute, and one of the paper’s authors.

After isolating cancer stem cells in adult brain tumors in 2004, the Cedars-Sinai researchers in 2006 reported that these cells are highly resistant to chemotherapy and other treatments. Even if a tumor is almost completely obliterated, it will regenerate from the surviving cancer stem cells and be even more resistant to treatment than before.

This study was supported in part by grants from the National Institutes of Health.

Citation: Stem Cells, “Hedgehog signaling regulates brain tumor stem cell self-renewal and portends shorter survival for patients with PTEN-coexpressing glioblastomas,” published online Sept. 11, 2008. To arrange interviews, please contact Sandy Van at 1-800-880-2397 or by reply e-mail.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu/

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>